2.   с течением времени подсистема и система в целом под воздействием внешних и внутренних факторов переходят из одного состояния в другое;

3.   в процессе функционирования системы (или подсистемы) она взаимодействует с внешней средой и другими системами, получая от них входной поток X(t) и выдавая выходной поток Y(t) событий, энергетических или материальных объектов.

Эффективность функционирования системы S, как правило, оценивается условной вероятностью достижения цели F(S) к заданному моменту времени. Целью функционирования системы S обычно является достижение определенного результата: обслуживание заданного количества заявок, поражение заданных объектов, решение заданных задач, производство определенного продукта и так далее.   Существует несколько способов математической формализации таких процессов. К ним относятся: Марковские процессы, сети Петри, семантические сети, конечные автоматы и алгоритмы. Перечисленные математические формализмы хорошо изучены и достаточно полно изложены в литературе.  Построение математических моделей сложных систем на основе типовых алгоритмических процессов является новым, мало известным, но весьма эффективным методом математического моделирования. Поэтому в дальнейшем основное внимание будет уделено этому методу. Описание алгоритмического процесса (3.6) позволяет воспроизвести этот процесс на ЭВМ с имитацией наиболее существенных событий, происходящих в системе. Замечательно то, что имитация может быть проведена в любом масштабе времени и с различными законами распределения.  Порядок проведения эксперимента, перечень входных факторов, измеряемых величин и порядок обработки результатов моделирования определяется на этапе планирования модельного эксперимента. В результате модельного эксперимента получают оценки нескольких альтернативных вариантов решения исследуемой проблемы, или же получают единственное оптимальное решение проблемы, если оно существует. Окончательное решение, как правило, предоставляется уполномоченному лицу.


Глава 2 . Роль компьютерного моделирования в процессе обучения

 

Понятие «модель» в обыденной жизни чаще ассоциируется с «макетом», имущим внешнее или функциональное сходство с определенным объектом. Макеты, модели и создаются для того, чтобы, не имея реального объекта, рассмотреть, как он выглядит, не имея возможности манипулировать с реальным объектом, имитирующим его. В результате наблюдения модели и манипуляций с моделью можно получить новые знания о реальном объекте. Если это уже известные человечеству сведения, то модель используется для обучения. Если новое знание получено впервые, то совершается акт познания мира человечеством. В результате познания человечество, как правило, приходит к более совершенной модели изучаемого объекта, точнее соответствующей реальному объекту [19,66].

Объект, в общенаучном смысле, - «определенная часть окружающей нас реальной действительности (предмет, процесс, явление) или «некоторая часть окружающего нас мира, которая может быть рассмотрена как единое целое». Заметим, что последняя трактовка понятия «объект» избавляет от необходимости в многочисленных высказываниях, связанных с объектами, перечислять триаду «предмет, процесс, явление», как это делается в большинстве учебников. Объект – это то, на что направлено внимание познающего субъекта: это то, что может быть вычислено в окружающем мире.

«Процесс – последовательная смена состояний объекта в результате произведенных действий». Но процесс сам по себе может объектом рассмотрения, частью окружающего мира, так как мир существует как в пространстве, так и во времени.

Явление – это обнаружение объекта, внешней формы его существования. Можно предположить, что под явлениями в школьных учебниках подразумеваются физические, химические, биологические, социальные и прочие явления. Явление может быть обнаружено, если его можно отличить от других явлений. Для этого необходимо сравнивать параметры, признаки и свойства все тех же предметов и процессов, т.е. объектов. Явление, будучи «вычлененным» из окружающего мира и рассматриваемое как единое целое, тоже может быть названо объектом. Таким образом, будем считать излишним перечисление в определениях и рассуждениях, относящихся к объекту вообще, таких сущностей, как предмет, процесс, явление.

Познать – значит суметь понять изучаемый определенной наукой объект настолько, чтобы можно было создать модель, наиболее точно сохраняющую изучаемые черты объекта. Широко известны истории создания модели Солнечной системы, атома, молекулы ДНК и др.

Наиболее точным в этом плане нам видится следующее определение модели: «Модель – это такой материальный или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты». Выделим основные моменты данного определения:

·     модель – это, в свою очередь, тоже объект;

·     модель может быть как материальной, так и мысленной;

·     модель замещает моделируемый объект, используется вместо него;

·     модель сохраняет черты моделируемого объекта, иначе это модель другого объекта;

·     модель может сохранять только некоторые черты моделируемого объекта, важные для данного исследования. Учет всех свойств объекта уточняет результаты исследования, но приводит к усложнению исследования. Некоторое упрощение, огрубление неизбежно. При этом неучтенные свойства объекта не должны существенно искажать результаты исследования. В противном случае модель не адекватна моделируемому объекту в данном исследовании. Впрочем, заключение о неадекватности модели – тоже важный научный вывод.

Моделирование – процесс создания модели, точнее – исследование какого-либо объекта путем построения и изучения его модели; использование моделей для определения и уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

Формальная система, эквивалентная реальному объекту, является моделью этого объекта. Формализация – процесс построения формальной системы – один из методов моделирования.

§1. Общая классификация моделей

Существуют разнообразные классификации моделей, опирающиеся на различные основания: по области знания, по области или цели исследования, по основанию отображения свойств и другие. На сегодняшний момент классификации различных авторов по одному и тому же основанию могут отличаться. Часто они отличаются друг от друга только используемой терминологией. На основании анализа и синтеза нескольких источников (в частности, приведенных в списке литературы) относительно классификации можно сделать следующие выводы.

Материальные и мысленные модели

На идеи моделирования базируется любой метод научного исследования, как теоретический, так и экспериментальный. Наиболее общим делением всех видов моделей будет деление по методу научного исследования в философском смысле (или по закону функционирования). Экспериментальный метод познания использует материальное моделирование (оно же – предметное, натурное, физическое). Материальные модели функционируют по законам объективной природы. Теоретический метод познания использует мысленное моделирование (оно же – идеальное, как противоположность материального, оно же – логическое), так как модели, полученные таким методом, функционируют по законам логики в сознании человека). В последнее время оно же называется информационным моделированием. Информационная модель противопоставляется материальной и определяется как «совокупность информации, характеризующей свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром». Но существует и другое понимание термина «информационная модель». Изменение ранее сложившегося значения термина может привести к терминологической путанице.

Рассмотрим ранее появившиеся определения. В словаре, основанном на многих авторитетных источниках, информационная модель определяется как «формализованное описание информационных структур и операций над ними» и отождествляется с «моделью данных», а также более узко – как «параметрическое представление процесса циркуляции информации, подлежащей автоматизированной обработке в системе управления». Требование формализации уже подразумевает более узкое понимание, чем идеальная модель. Предназначение описываемой информации для автоматической обработки недвусмысленно связывает информационную модель с процессом использавния компьютера. Аналогичное высказывание сделали А.В. Могилев и Е.К. Хеннер [49,68]. Учитывая сказанное, на первый взгляд уместнее было бы именовать модели, используемые при теоретическом методе познания, мысленными (отталкиваясь от определения модели) или логическим (по имени науки, изучающей формы и законы мышления). Однако в последнее время употребление понятия «информационная модель» в значении мысленной модели становится уже привычным. Старое значение этого понятия целиком переносится на понятие «модель данных», которое его, по сути, сдублировало. Таким образом, будем считать, что все модели по закону функционирования делятся на материальные и информационные

Разновидности информационных (мысленных) моделей

Информационная (мысленная) модель – это в широком смысле любой образ объекта, мысленные или условный [24,66]. Мысленное моделирование сводится к информационным процессам. Форма существования информации определяется двумя факторами: способом кодирования (алфавитом и комбинаторикой) и материальным носителем. Алфавит кодирования отчасти определяет степень изученности моделируемого объекта. Из этого следует, что при классификации мысленных моделей важно различать их именно по способу представления (схема 1).

Схема 1

Модели

(по методу научного исследования в философском смысле)

(по закону функционирования)

Материальные

Информационные (в широком смысле мысленные

Интуитивные
Образные

Образно-знаковые

Знаковые

(по способу представления)

(по алфавиту кодирования)

Вербальные
Иконические

Интуитивное моделирование – это мысленное представление об объекте. Алфавитом кодирования информации для интуитивных моделей является система понятий, а носителем – нервная система человека, мозг. Жизненный опыт каждого человека – его интуитивная модель окружающего мира; музыкальная тема в мозгу композитора – интуитивная модель музыкального произведения.

Образное моделирование – это выражение свойств оригинала с помощью наглядных чувственных образов, описанных естественным языком или изображенных рисунком. Носитель информации может находиться и вне человека. Примеры: художественные полотна, фотографии, кинофильмы, устные рассказы, многие физические модели: модель атома, предложенная Резерфордом и Бором, другие шарики молекул в кинетической теории газов. Поскольку при научном моделировании понятия чаще всего кодируются словами и рисунками, то этот вид моделирования еще называют иконическим или вербальным. Нам представляется возможным считать вербальное и иконическое моделирование разновидностями образного моделирования по способу кодирования ( по способу представления).

Образно-знаковое информационное моделирование использует знаковые образы какого-либо вида: схему, граф, чертеж, график, план, карту и т.п. Примеры: школьная карта, план квартиры, столбчатая диаграмма соотношения голосов избирателей, семантическая сеть понятий, родословное дерево, блок-схема алгоритма, классификационная схема. Глобус можно рассматривать как совокупность двух моделей в одном реальном объекте: материальную подобную модель земного шара как физического тела и информационную образно-знаковую модель расположения чего-либо на поверхности этого тела.

Знаковое (символическое) моделирование использует условные знаки, специальные символы, буквы, цифры и предусматривает совокупность законов оперирования с выбранными знаками. Примеры: общая схема описания системы языка или какой-либо его подсистемы, физические или химические формулы, математические выражения и уравнения, теория музыки, нотная запись и т.д. Из этого видно, что образно-знаковое моделирование является промежуточным между образным и знаковым в различной степени для каждой конкретной модели имеет черты и того и другого.

§2. Разновидности материальных моделей, информационные модели

Материальное (натуральное) моделирование по закону функционирования и характерным особенностям выражения свойств и отношений оригинала разделяется на физическое и формальное моделирование., или аналоговое, по А.Б. Горстко. При физическом моделировании в устройстве, воспроизводящем строение и/или действие моделируемого объекта, используются объекты той же природы, что и моделируемые. Модели летательных аппаратов, автомобилей, судов и т.п.; планетарий; лотки с водой в моделях гидротехнических сооружений; форма в литейном деле; макеты зданий; куклы без автоматики – все это материальные физические модели. При материальном формальном моделировании имитируют строение и/или действие моделируемого устройства или явления, используя процессы и явления другой физической природы. Примерами могут служить моделирование механических колебаний через электромагнитные, электрического тока – с помощью движения жидкости по трубам; игрушки, самостоятельно производящие какие-либо действия; учебные модели в школьных кабинетах.

Два существенных для дальнейшего изложения различия материальных моделей проиллюстрированы на схеме 2.

(по характерным особенностям выражения свойств и отношений оригинала)

 

 

Формальные (аналоговые)

(по временному фактору)

Материальные модели

Функциональные (динамические)

Геометрические (статические)

Схема 2

Физические (подобные)

Материальные модели


и

Функционально-геометрические

Информационные модели

 

Информационная модель в узкоспециальной трактовке

 

Ранее сложившиеся определения информационной модели, как уже упоминалось, являются более узкими, специальными. Предназначение описываемой информации для автоматической обработки предполагает применение компьютера. В этом смысле к традиционно используемому специалистами по информационным системам термину ближе следующие определения:

1)   «информационной моделью объекта, явления и пр. называется набор величин языка программирования… с помощью которого мы задаем данный объект, явление и пр.»;

2)   «информационной моделью будем называть запись на формальном языке схемы объекта» («один из возможных путей составления схемы следующий: 1) в объекте выделяют элементы, составные части… 2) между элементами устанавливают связи, отношения»);

3)   «информационная модель – это языковая модель, т.е. описание системы (объектов) с помощью языка (системно-информационного)»

Два последних определения не противоречат друг другу, первое – значительно более узкое. Выделим в этих определениях общие моменты:

1)   описание структуры объекта;

2)   описание характеристик состояния объекта и его частей;

3)   описание отношений между частями объекта;

4)   описание формализовано.

Обобщая выделенное и принимая во внимание, что система – это множество элементов с определенными на нем отношениями, дадим определение информационной модели в узком специальном понимании: информационной моделью является системное, формализованное описание объекта. По способу представления в зависимости от степени формализации информационная модель может быть образно-знаковой (схема, чертеж, граф, семантическая сеть и пр.) или знаковой (математическая модель).

Таким образом, в учебной и методической литературе мы имеем два определения понятия «информационная модель»: в широком общенаучном смысле – как совокупность информации, характеризующей свойства и состояния объекта, а также его взаимосвязь с внешним миром, и в узкоспециальном смысле – образно-знаковое и знаковое проявление вышеупомянутой широкой трактовки – системное, формализованное описание объекта. Мы считаем возможным для школьных учебников принять широкое определение при условии рассмотрения информационных моделей по способу представления.

Разновидности информационных моделей

Все модели, и информационные и материальные, по временному фактору могут быть разделены на статические и динамические, так как реальный объект всегда находится в пространстве и времени. Материальные статические модели* отражают пространственные характеристики реального объекта (всевозможные макеты), материальные динамические модели передают особенности функционирования объекта (периодическое движение «водолаза» в трубе с водой, имеющей различную температуру на концах, - модель теплового двигателя). Многие материальные модели являются функционально-геометрическими. Информационные модели (и в широком, и в узком смысле) тоже бывают статическими и динамическими.

Статическая и динамическая информационные модели представляют объект различных позиций. Статическая модель отражает строение и параметры объекта, поэтому ее называют также структурной. Когда речь идет о какой-либо предметной области, то говорят о модели знаний этой предметной области. Различают знания декларативные (знания о фактах, данные) и процедурные (знания о способах решения задач).

Данные – это отдельные факты, характеризующие объекты в предметной области, а также их свойства. По способу представления различают иерархические, сетевые и реляционные (табличные) структуры данных (схема 3). Многие школьные учебники подробно рассказывают об этом в связи с изучением процесса создания баз данных.

Схема 3

Структуры данных
Модели знаний
Иерархические

 

 

Сетевые

 

 

Реляционные

Продукционные модели

 

 

Семантические сети
Фреймы

 

 

Логические модели

////

Структурные модели

Знания – это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области. Существуют десятки моделей представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:

·     продукционные модели – основаны на правилах, позволяющих представить знания в виде предложений типа «если <условие>, то <действие>»;

·     семантические сети – ориентированные графы, вершины которых – понятия, а дуги – отношения между ними; поиск решения сводится к поиску фрагмента сети, соответствующего поставленному вопросу;

·     фреймы – абстрактные образы или ситуации, формализованные модели для отображения образа;

·     формальные логические модели – основаны на классическом исчислении предикатов первого порядка, когда предметная область задается в виде набора аксиом.

Структуры данных входят как часть модели знаний предметной области *.

Динамическая модель отражает процесс изменения и функционирования объекта, представленного набором параметров. Существует еще один родственный термин: алгоритмическая модель – комплекс алгоритмов, описывающих функционирование системы.

Алгоритмическая модель может быть представлена в словесно-пошаговом виде, блок-схемой, программой (раздел операторов) и др. Эти разновидности представления алгоритма отличаются степенью формализации системы команд. Словесно-пошаговые представления могут допускать нестрогие описания действий, условно понятных людям, для которых создавались эти описания. Такие представления чаще употребляются в неформализованных ситуациях. Блок-схемы и структограммы понятны более широкому кругу людей, так как введены определенные условные обозначения, правила их соединений. Алгоритмы, записанные в виде блок-схем, по определению являются формальными системами, но, безусловно, имеют меньшую степень общности, чем запись на языках программирования. Программа как последовательность команд является действительно формальной системой.

Таким образом, алгоритмические модели могут относиться по способу представления к образным – вербальным или иконическим (вспомним алгоритмы из пропедевтического курса информатики), образно-знаковым (блок-схема) и знаковым (программа).

Понятие «динамическая информационная модель» несколько шире понятия «алгоритмическая модель», так как включает и все функции времени, и интуитивное представление человека и каких-либо преобразованиях во времени, например о старении человека.

Информационно-логическая (инфологическая) модель определяется как «модель предметной области, определяющая совокупность информационных объектов, их атрибутов и отношений между объектами, динамику изменений предметной области, а также характер информационных потребностей пользователя. Создается по результатам предпроектного обследования предметной области и служит основанием для составления технико-экономического обоснования банка данных и разработки технического задания на проектирование».

Приведенная формулировка не дает возможности увидеть отличия инфологической модели от информационной. Совокупность информационных объектов, их атрибутов и отношений между объектами можно вполне назвать и информационными структурами. Следовательно, структурная модель есть часть инфологической модели. Динамика изменений предметной области связана с операциями над информационными структурами и представлением процессов циркуляции информации. Значит, вторую часть инфологической модели составляет динамическая модель.

Информационно-логическая модель включает:

1)   описания отношений между объектами;

2)   описание самих объектов через указание признаков (атрибутов);

3)   алгоритмы действий, выполняемых объектами;

4)   правила вывода, т.е. получения результата.

В болле поздней работе А.В. Горячева, одного из авторов упомянутой программы, и Н.И. Суворовой «Информационное моделирование: величины, объекты, алгоритмы» термин «инфологическая модель» исчезает совсем, а появляется «информационная модель действия» как алгоритм, оформленный в виде схемы или пронумерованных пунктов.

Из всего вышесказанного можно сделать вывод, что информационно-логическая модель есть совокупность структурной и динамической (алгоритмической) моделей. Впрочем, действительно можно обойтись и без термина «инфологическая модель» в рассуждениях о моделировании для компьютера, ограничившись составными частями: структурной и динамической моделями. Но приведем еще цитату: «… реальный объект всегда находится в пространстве и времени одновременно. Это, в свою очередь, приводит к существованию информационных моделей еще одного типа, в которых совмещены свойства динамических и структурных моделей. В простейшем случае это означает, что организованную (структурную) информацию и алгоритм, преобразующий эту информацию, необходимо рассматривать как единое целое. В этом случае информацию, которая подлежит преобразованию, называют данными, а процесс объединения данных и алгоритма – инкапсуляцией. Получившаяся информационная модель называется информационным объектом или просто объектом». Из цитаты видно, что все-таки есть необходимость в понятии модели, объединяющей черты и структурной и динамической модели. Информационный объект является инкапсулированной инфологической моделью, т.е. разновидностью информационной модели в узкоспециальном понимании.

Схема 4

Информационные модели

(по временному фактору)

Физические (подобные)

Формальные (аналоговые)

Овал: Инкапсуляция

Понятие «логические модели» официально появилось только в руководящем документе «Программа вступительного экзамена по информатике в высшие учебные заведения Российской Федерации в 2000 году»*. Выше уже упоминалось, насколько часто эти слова встречаются в рассуждениях о моделях, причем чаще как синоним мысленной модели. Таким образом, требуется более строгая конкретизация понятия «логическая модель», соотнесение его школьного использования с общенаучными и специальными, если изучение данного понятия предполагается на уровне средней школы.

Определим это понятие так : «Логические модели – модели, в которых на основе анализа различных условий принимается решение». Приведенные ниже примеры логических моделей, позволяют в это понятие в соответствии с вышеприведенной классификацией и формальные логические модели, и продукционные модели, и алгоритмические модели с разветвляющимися конструкциями. Похоже, что такая трактовка соответствует обобщенному понятию «модель знания». Заметим, что у того же автора существует похожий термин «формальная логическая модель» определяет подмножество понятия «логическая модель», что может привести к путанице.

Нам представляется целесообразным предназначать логическую модель для представления процесса принятия решения. Это соответствует традиционному пониманию логики как науки «о законах и формах мышления, методах познания и условиях истинности знаний и суждений». Но описание рассуждений по поводу принятия решения требует рассмотрения и структурных моделей данных, и описания мысленных действий с этими данными. То есть логические модели включают в себя органично сплетенные структурные модели и описывающие последовательность мысленных действий динамические модели.

К сожалению, у нас еще не сформировалось обоснованное мнение о сути понятия «логическая модель» и его месте среди других моделей, которые использует человек в познании и повседневной практике вообще и при решении задач с использованием компьютера в частности.

Представление информационной модели

Текст – наиболее подходящая форма представления информационной модели, которая должна послужить основой для компьютерной модели. Правила образования текста задаются грамматикой используемого языка. Поэтому любой текст можно рассматривать как языковую модель реального объекта. Для описания специальной информационной модели используют формальные языки, например языки программирования. Таким образом, текст программы является информационной моделью. Для описания структуры объекта может быть использован язык математики. Последовательностью математических формул, т.е. упорядоченной математической моделью, можно задать и алгоритм. Следовательно, математическая модель может рассматриваться как способ представления информационной модели, как разновидность информационной модели в узкоспециальном смысле. Популярность понятия «математическая модель» требует его отдельного рассмотрения.

Во многих источниках математическая модель, определяемая как «система математических зависимостей, описывающих структуру или функционирование объекта», фактически отождествляется со знаковой моделью. Но многие образно-знаковые модели, например граф, график, геометрический чертеж и т.п., тоже традиционно относятся к математическим моделям. В специальной литературе по информатике этот термин часто употребляется еще шире. Характерны высказывания типа: «… математическая модель, используемая в вычислительном эксперименте, представляет собой совокупность системы уравнений, описывающих изучаемый процесс (явление), алгоритма ее численного решения на ЭВМ и набора программ, при помощи которых исследователь может получать решение сформулированной задачи». Для наших целей уточним, что математические модели, реализующие математические методы, как простые, так и сложные, используются для работы с компьютером только на определенных этапах решения некоторых задач наряду с другими разновидностями моделей. Таким образом, математические модели не имеют того ореола исключительности, который создается после чтения специальной литературы на эту тему. Излишнее раздувание содержания вполне конкретного понятия приведет к его некорректному употреблению. Остановимся на определении, данном в начале. «… математические модели – математические формулы, отображающие связь различных параметров объекта или процесса». По вышеприведенной классификации математические модели являются разновидностью информационных (и в широком, и в узком смысле) знаковых моделей по способу кодирования.

Компьютерные модели

Термин «компьютерная модель» заявлен в учебниках, создаваемых под руководством А.Г. Гейна и Н.В. Макаровой; в первом случае под данным термином понимается модель задачи, составленная в расчете на исполнителя, имитированного на ЭВМ, где исполнитель – это тот, «кто будет получать результаты из исходных, используя построенную модель»; во втором случае приводится следующее определение «… компьютерная модель – модель, реализованная средствами программной среды». Поскольку компьютерная модель существует уже в электромагнитном представлении в памяти компьютера, т.е. по сути, является математической формальной моделью, ее определение можно дать и так: компьютерная модель - это совокупность данных и программ для обработки этих данных, причем и программы, и данные хранятся в памяти компьютера. В пакет программ включаются и программы преобразования данных из форм, доступных пользователю, в форму, воспринимаемую компьютером, и обратно.

Текст программы (информационная модель), сохраненный в памяти компьютера, вместе с программами редактирования этого текста (обрабатывающими программами) представляет собой компьютерную модель всего лишь этого текста, а не реального объекта, представляемого программой. На загрузочный модуль, полученный в результате трансляции этого текста и редактирования связей, уже будет компьютерной моделью информационного объекта, ради которой создавалась программа. В любой ситуации компьютерная модель является уже материальной моделью, тогда как структурная, алгоритмическая модели или информационный объект, предшествующие компьютерной модели, - информационные (мысленные) модели. Иллюстрацией данных суждений может служить схема 5.

Схема 5

Программы

Алгоритмы

Математические модели

Прочие

Информационные модели (в узкоспециальном смысле) = Языковые модели

Работа с программным обеспечением

 

 

Компьютерная модель (материальная)

Изложение вопросов формализации и моделирования является актуальнейшей задачей базового курса информатики. Но эта задача будет оставаться и сложнейшей до тех пор, пока не будет наведен порядок с терминологией и классификацией. Нужна полная классификация моделей, а не только освещение узкоспециальных аспектов.

Знания любой предметной области усваиваются лучше в структурированном виде. Когда существует четко обоснованная связь понятий и подкрепление убедительными примерами, то они легко воспринимаются даже на высоком научном уровне. Стремление упростить материал вряд ли целесообразно.

Глава 3. Методические рекомендации курса «Математические основы моделирования 3D объектов» базового курса «компьютерное моделирование» для студентов педагогических ВУЗов специальности преподаватель информатики

§1. Принципы построения электронного учебника

Прежде чем рассмотреть принципы построения электронного учебника, необходимо дать смысловое определение данного понятия, выявить его сходства и различия с обычным бумажным учебником.

Учебник — учебное издание, содержащее систем атическое изложение учебной дисциплины или ее раздела, части, соответствующее государственному стандарту и учебной программе и официально утвержденное в качестве данного вида издания [25,66].

Важную роль в процессуальной части компьютерной технологии обучения играет электронный учебник.

Электронный учебник — основное учебное электронное издание, созданное на высоком научном и методическом уровне, полностью соответствующее федеральной составляющей дисциплины Государственного образовательного стандарта специальностей и направлений, определяемой дидактическими единицами стандарта и программой.

Постепенное наращивание парка вычислительной техники в быту делает перспективной отрасль деятельности, связанной с разработкой и внедрением как электронных учебников, так и технологий обучения без преподавателя.

В отличие от обычного (бумажного) учебника электронный учебник может и должен обладать несколько большим «интеллектом», поскольку компьютер способен имитировать некоторые аспекты деятельности преподавателя (подсказывать в нужном месте в нужное время, дотошно выяснять уровень знаний и т.п.). Электронный учебник должен содержать весь необходимый (и даже более) учебный материал по определенной дисциплине. Наличие же «интеллектуальных аспектов» в электронном учебнике не только компенсирует его недостатки (использование исключительно на компьютере), но и дает ему значительные преимущества перед бумажным вариантом (быстрый поиск необходимой информации, компактность и т.д.).

Каждый учебник, с одной стороны, должен быть в значительной степени автономным, а с другой – должен отвечать некоторым стандартам по своей внутренней структуре и форматам содержащихся в нем информационных данных, что обеспечит возможность легко и быстро связать необходимый комплект учебников в одну обучающую систему (в которой могут иметь место также информационно-поисковая система, экзаменационная система и т.п.), ориентированную, например на дисциплины одного года дистанционного обучения.

В данном дипломном проекте рассматривается построение электронного учебника на основе HTML. Данный электронный учебник не содержит всех элементов, из которых предлагается строить образцовые учебники, но включает большое количество иллюстраций и характеризуется тем, что при его создании было широко использованы средства автоматизации сборки учебника.

По мнению Машбица Е.И. электронный учебник обладает некоторыми преимуществами по сравнению с бумажным (обычным) учебником.

Во-первых, электронный учебник, включает в себя не только текстовую и графическую информацию, но также звуковые и видеофрагменты, что позволяет передать в динамике процессы и явления. При этом восприятие и заинтересованность учащихся повышаются и как следствие, улучшается качество знаний.

Во-вторых, он обладает системой самопроверки обучающегося, общение с которой в некоторой степени заменяет непосредственное общение с преподавателем.

В-третьих, он позволяет индивидуализировать обучение, т.е. обучающийся может выбирать свой темп обучения, возвращаться к уже изученному материалу по своему усмотрению. И в отличие от обычного (печатного) электронный учебник обладает интерактивными возможностями, т.е. может предъявлять необходимую информацию по запросу обучаемого, что также приближает его (электронный учебник) к обучению, проводимому под руководством преподавателя.

Электронный учебник должен удовлетворять основным методологическим требованиями: иметь четкую логическую структуру, содержать базовый объем изучаемого материала, учитывать новые тенденции в науке и технологии на ближайшее будущее. В этой связи отбор материала для электронного учебника должен осуществляться на основе анализа перспективных направлений развития науки техники.

Требования, предъявляемые к электронному учебнику, определили важнейшие принципы, которыми следует руководствоваться при его создании:

1.         Принцип квантования: разбиение материала на разделы, состоящие из модулей, минимальных по объему, но замкнутых по содержанию.

2.         Принцип полноты: каждый модуль должен иметь следующие компоненты

-        теоретическое ядро,

-        контрольные вопросы по теории,

-        примеры,

-        задачи и упражнения для самостоятельного решения,

-        контрольные вопросы по всему модулю с ответами,

-        контрольная работа,

-        контекстная справка (Help),

-        исторический комментарий.

3.         Принцип наглядности: каждый модуль должен состоять из коллекции кадров с минимумом текста и визуализацией, облегчающей понимание и запоминание новых понятий, утверждений и методов. 

4.         Принцип ветвления: каждый модуль должен быть связан гипертекстными ссылками с другими модулями так, чтобы у пользователя был выбор перехода в любой другой модуль. Принцип ветвления не исключает, а даже предполагает наличие рекомендуемых переходов, реализующих последовательное изучение предмета.

5.         Принцип регулирования: учащийся самостоятельно управляет сменой кадров, имеет возможность вызвать на экран любое количество примеров (понятие ``пример" имеет широкий смысл: это и примеры, иллюстрирующие изучаемые понятия и утверждения, и примеры решения конкретных задач, а также контрпримеры), решить необходимое ему количество задач, задаваемого им самим или определяемого преподавателем уровня сложности, а также проверить себя, ответив на контрольные вопросы и выполнив контрольную работу, заданного уровня сложности.

6.         Принцип адаптивности: электронный учебник должен допускать адаптацию к нуждам конкретного пользователя в процессе учебы, позволять варьировать глубину и сложность изучаемого материала и его прикладную направленность в зависимости от будущей специальности учащегося, применительно к нуждам пользователя генерировать дополнительный иллюстративный материал, предоставлять графические и геометрические интерпретации изучаемых понятий и полученных учащимся решений задач.

7.         Принцип компьютерной поддержки: в любой момент работы учащийся может получить компьютерную поддержку, освобождающую его от рутинной работы и позволяющую сосредоточиться на сути изучаемого в данный момент материала, рассмотреть большее количество примеров и решить больше задач. Причем компьютер не только выполняет громоздкие преобразования, разнообразные вычисления и графические построения, но и совершает математические операции любого уровня сложности, если они уже изучены ранее, а также проверяет полученные результаты на любом этапе, а не только на уровне ответа.

8.         Принцип собираемости: электронный учебник (и другие учебные пакеты) должны быть выполнены в форматах, позволяющих компоновать их в единые электронные комплексы, расширять и дополнять их новыми разделами и темами, а также формировать электронные библиотеки по отдельным дисциплинам (например, для кафедральных компьютерных классов) или личные электронные библиотеки студента (в соответствии со специальностью и курсом, на котором он учится), преподавателя или исследователя.

Структурные элементы электронного учебника во многом повторяют компоненты обычного учебника.

1.         Обложка: Должна быть красочной. Для этого можно оформить ее с помощью графических вставок и фонов. Для выставочных образцов учебника можно оформить обложку с помощью анимации, видеовставок или прокручивающейся аннотации учебника

2.         Титульный экран: Содержит название учебника, информацию о вышестоящей организации (например, министерство), об авторских правах, об аттестованности учебника, о дате издания, об организации-разработчике учебника, о местоположении информации об авторах и т.п.

3.         Оглавление: Является очень важным структурным элементом электронного учебника. С одной стороны оно должно быть достаточно подробным, чтобы обеспечивать оперативный доступ к сравнительно небольшим содержательным частям учебника, а с другой стороны - максимально обозримым, т. е. находится на одном экране.

Кроме того, оглавление должно обеспечивать доступ:

-            к системе самопроверки знаний;

-            к системе рубежного контроля;

-            к функции поиска части содержания учебника по текстовому фрагменту;

-            к словарю терминов и определений;

-            к списку дополнительной литературы;

а также иметь органы управления, позволяющие:

-  переходить к любой части учебника;

-  заканчивать работу с учебником;

-  возвращаться к титульному листу.


Информация о работе «Матемитические основы моделирование 3d объектов»
Раздел: Математика
Количество знаков с пробелами: 107377
Количество таблиц: 30
Количество изображений: 9

0 комментариев


Наверх