2. Определите показатели частной и множественной корреляции.
Линейные коэффициенты частной корреляции здесь рассчитываются по рекуррентной формуле:
Если сравнить значения коэффициентов парной и частной корреляции, то приходим к выводу, что из-за слабой межфакторной связи (rx1x2=0,39) коэффициенты парной и частной корреляции отличаются значительно.
Растет линейного коэффициента множественной корреляции выполним с использованием коэффициентов и :
Зависимость у от х1 и х2 характеризуется как тесная, в которой 63 % вариации потребления электроэнергии определяется вариацией учетных в модели факторов: производства продукции и уровня механизации труда. Прочие факторы, не включенные в модель, составляют соответственно 37 % от общей вариации y.
3.Найдите частные коэффициенты эластичности и сравните их с Бэтта коэффициентами.
Для характеристики относительной силы влияния х1 и х2 на y рассчитаем средние коэффициенты эластичности:
С увеличением производства продукции на 1 % от его среднего потребления электроэнергии возрастает на 0,29 % от своего среднего уровня; при повышении среднего уровня механизации труда на 1 % среднее потребления электроэнергии увеличивается на 0,006% от своего среднего уровня. Очевидно, что сила влияния производства продукции на среднее потребление электроэнергии оказалась больше, чем сила влияния среднего уровня механизации труда.
4. Рассчитайте общие и частные F – критерии Фишера.
Общий F-критерий проверяет гипотезу H0 о статистической значимости уравнения регрессии и показателя тесноты связи (R2 = 0):Fтабл. = 9,55
Сравнивая Fтабл. и Fфакт., приходим к выводу о необходимости не отклонять гипотезу H0 и признается статистическая незначимость, ненадежность уравнения регрессии.
Частные F-критерий – Fх1. и Fх2 оценивают статистическую значимость присутствия факторов х1 и х2 в уравнении множественной регрессии, оценивают целесообразность включения в уравнение одного фактора после другого фактора, т.е. Fх1 оценивает целесообразность включения в уравнение фактора х1 после того, как в него был включен фактор х2. Соответственно Fх2 указывает на целесообразность включения в модель фактора х2 после фактора х1.
Низкое значение Fх2 (меньше 1) свидетельствует о статистической незначимости прироста r2yx1 за счет включения в модель фактора х2 после фактора х1. следовательно, подтверждается нулевая гипотеза H0 о нецелесообразности включения в модель фактора х2.
Задача 21Модель денежного и товарного рынков:
Rt = a1 + b12Yt + b14Mt + e1, (функция денежного рынка);
Yt = a2 + b21Rt + b23It + b25Gt + e2 ( функция товарного рынка);
It = a3 + b31Rt+ e3 (функция инвестиций),
где R - процентные ставки;
Y - реальный ВВП;
M - денежная масса;
I - внутренние инвестиции;
G - реальные государственные расходы.
Решение:
Rt = a1 + b12Yt + b14Mt + e1,
Yt = a2 + b21Rt + b23It + b25Gt + e2
It = a3 + b31Rt + e3
Сt = Yt + It + Gt
Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.
Модель включает четыре эндогенные переменные (Rt, Yt, It, Сt) и две предопределенные переменные ( и ).
Проверим необходимое условие идентификации для каждого из уравнений модели.
Первое уравнение:
Rt = a1 + b12Yt + b14Mt + e1.
Это уравнение содержит две эндогенные переменные и и одну предопределенную переменную . Таким образом,
,
т.е. выполняется условие . Уравнение сверхидентифицируемо.
Второе уравнение:
Yt = a2 + b21Rt + b23It + b25Gt + e2.
Оно включает три эндогенные переменные Yt, It и Rt и одну предопределенную переменную Gt. Выполняется условие
.
Уравнение идентифицируемо.
Третье уравнение:
It = a3 + b31Rt+ e3.
Оно включает две эндогенные переменные Itи Rt. Выполняется условие
.
Уравнение идентифицируемо.
Четвертое уравнение:
Сt = Yt+ It+ Gt.
Оно представляет собой тождество, параметры которого известны. Необходимости в идентификации нет.
Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.
Rt | ||||||
I уравнение | 0 | 0 | –1 | b12 | b14 | 0 |
II уравнение | 0 | b23 | –1 | 0 | b25 | |
III уравнение | 0 | –1 | b31 | 0 | 0 | 0 |
Тождество | –1 | 1 | 0 | 1 | 0 | 1 |
В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.
Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Rt | ||||
II уравнение | b23 | –1 | b25 | |
III уравнение | –1 | b31 | 0 | 0 |
Тождество | 1 | 0 | 1 | 1 |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Rt | ||||||
I уравнение | 0 | 0 | –1 | b12 | b14 | 0 |
III уравнение | 0 | -1 | b31 | 0 | 0 | 0 |
Тождество | –1 | 1 | 0 | 1 | 0 | 1 |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Rt | ||||||
I уравнение | 0 | 0 | –1 | b12 | b14 | 0 |
II уравнение | 0 | b23 | –1 | 0 | b25 | |
Тождество | -1 | 1 | 0 | 1 | 0 | 1 |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:
Достаточное условие идентификации для данного уравнения выполняется.
Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом:
Rt = a1 + b11Yt + b13Mt + b15Gt + b16Gt + u1
Yt = a2 + b21Rt + b23It + b25Gt + b26Gt + u 2
It = a3 + b31Rt + b33It + b35Gt + b36Gt + u 3
Сt = a4 + b41Rt + b43It + b45Gt + b46Gt + u 4
Задача 26
Имеются данные об урожайности культур в хозяйствах области:
Варианты | Показатели | Год |
| ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
4 | Урожайность картофеля, ц/га | 63 | 64 | 69 | 81 | 84 | 96 | 106 | 109 |
Задание:
1. Обоснуйте выбор типа уравнения тренда.
2. Рассчитайте параметры уравнения тренда.
3.Дайте прогноз урожайности культур на следующий год.
Решение:
1. Обоснуйте выбор типа уравнения тренда.
Построение аналитической функции для моделирования тенденции (тренда) временного ряда называют аналитическим выравнивание временного ряда. Для этого применяют следующие функции:
Ø линейная
Ø гипербола
Ø экспонента
Ø степенная функция
Ø парабола второго и более высоких порядков
Параметры трендов определяются обычными МНК, в качестве независимой переменной выступает время t=1,2,…,n, а в качестве зависимой переменной – фактические уровни временного ряда yt. Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации .
Сравним значения R2 по разным уровням трендов:
Полиномиальный 6-й степени - R2 = 0,994
Экспоненциальный - R2 = 0,975
Линейный - R2 = 0,970
Степенной - R2 = 0,864
Логарифмический - R2 = 0,829
Исходный данные лучше всего описывает полином 6-й степени. Следовательно, для расчета прогнозных значений следует использовать полиномиальное уравнение.
2. Рассчитайте параметры уравнения тренда.
y = - 0,012*531441 + 0,292*59049 – 2,573*6561 +10,34*729 – 17,17*81 + 9,936*9 + 62,25 =
= - 6377,292 + 17242,308 – 16881,453 + 7537,86 - 1390,77 + 89,424 + 62,25 = 282,327
3.Дайте прогноз урожайности культур на следующий год.
Урожайность картофеля, ц/га в 9-ом году приблизительно будет 282 ц/га.
... = 1,54773 Исходная нелинейная модель примет вид: Y = 1,54773e0,79477X 5. Вычислим прогнозируемое Yp в то Xp = 6,5: Yp = 1,54773e 0,79477*6,5 = 271,18 Задание № 3 По заданным статистическим данным с помощью пакета "Excel": построить корреляционную матрицу; по корреляционной матрице проверить факторы X1, X2, X3 на мультиколинеарность, и, если она есть, устранить ее, исключив один из ...
... или 16,4%, тогда как доля влияния фактора общая площадь – 0,836 или 83,6%. Задача №2. Исследование динамики экономического показателя на основе анализа одномерного временного ряда Таблица 6– Исходные данные t 1 2 3 4 5 6 7 8 9 yt 20 27 30 41 45 51 51 55 61 1. Выявление аномальных наблюдений Построим график временного ряда Для выявления аномальных наблюдений ...
... и детерминации и F-критериев Фишера наибольшие. 3. Множественная регрессия Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции. Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности ...
... , что и в литературе встречается указание на то, что одним из свойств производственной функции является прохождение ее графика через начало координат, (9) свидетельствующее о невозможности выпуска продукции без использования производственных ресурсов. Исходя из сказанного, надо признать, что модели производственной функции линейного типа имеют ограниченную область применения. Поэтому в дальнейшем ...
0 комментариев