7. ПРИМЕРЫ ПОСТАНОВОК, ФОРМАЛИЗАЦИИ И РЕШЕНИЯ ПЕРСПЕКТИВНЫХ ОПТИМИЗАЦИОННЫХ УПРАВЛЕНЧЕСКИХ ЗАДАЧ

Одним из методов решения задач линейного программирования является графический метод, применяемый для решения тех задач, в которых имеются только две переменные, поскольку в таких случаях имеется возможность графически изобразить область допустимых решений (ОДР).

Примечание. Графический метод может применяться также для решения задач с любым количеством переменных, если возможно выразить все переменные задачи через какие-либо две переменные.

ОДР – это множество значений переменных X1,X2,...,Xn, удовлетворяющих ограничениям задачи. Для задач с двумя переменными ОДР представляет собой множество точек (X1; X2), т.е. некоторую область на плоскости (обычно – многоугольник). Для задач с тремя переменными ОДР представляет собой многогранник в пространстве, для задач с большим количеством переменных – некоторую область многомерного пространства. Можно доказать, что экстремум (минимум или максимум) целевой функции всегда достигается в одной из угловых точек ОДР. Другими словами, оптимальное решение всегда находится в угловой точке ОДР. Поэтому задачу линейного программирования с двумя переменными можно решить следующим образом:

ü  построить ОДР на плоскости в системе координат (X1; X2),

ü  определить все угловые точки ОДР,

ü  вычислить значения целевой функции в этих точках и выбрать оптимальное решение.

Решим графическим методом следующую задачу: предприятие химической промышленности выпускает соляную и серную кислоту. Выпуск одной тонны соляной кислоты приносит предприятию прибыль в размере 25 ден.ед., выпуск одной тонны серной кислоты – 40 ден.ед. Для выполнения государственного заказа необходимо выпустить не менее 200 т соляной кислоты и не менее 100 т серной кислоты. Кроме того, необходимо учитывать, что выпуск кислот связан с образованием опасных отходов. При выпуске одной тонны соляной кислоты образуется 0,5 т опасных отходов, при выпуске одной тонны серной кислоты – 1,2 т опасных отходов. Общее количество опасных отходов не должно превышать 600 т, так как превышение этого ограничения приведет к выплате предприятием крупного штрафа.

Требуется определить, сколько соляной и серной кислоты должно выпустить предприятие, чтобы получить максимальную прибыль.

Составим математическую модель задачи. Для этого введем переменные. Обозначим через X1 количество выпускаемой соляной кислоты (в тоннах), через X2 – количество серной кислоты (в тоннах).

Составим ограничения, связанные с необходимостью выполнения государственного заказа. Предприятию необходимо выпустить не менее 200т. соляной кислоты. Это ограничение можно записать следующим образом: X1 ≥ 200. Аналогично составим ограничение, устанавливающее, что предприятие должно выпустить не менее 100т. серной кислоты: X2 ≥ 100.

Составим ограничение на опасные отходы. При выпуске одной тонны соляной кислоты образуется 0,5т. опасных отходов; значит, общее количество опасных отходов при выпуске соляной кислоты составит 0,5·X1 т. При выпуске серной кислоты образуется 1,2·X2 т опасных отходов. Таким образом, общее количество опасных отходов составит 0,5·X1 + 1,2·X2 т. Эта величина не должна превышать 600 т. Поэтому можно записать следующее ограничение: 0,5·X1 + 1,2·X2 ≤ 600.

Кроме того, переменные X1 и X2 по своему физическому смыслу не могут принимать отрицательных значений, так как они обозначают количество выпускаемых кислот. Поэтому необходимо указать ограничения неотрицательности): X1 ≥ 0, X2 ≥ 0.

В данной задаче требуется определить выпуск кислот, при котором прибыль будет максимальной. Прибыль от выпуска одной тонны соляной кислоты составляет 25 ден.ед.; значит, прибыль от выпуска соляной кислоты составит 25·X1 ден.ед. Прибыль от выпуска серной кислоты составит 40·X2 ден.ед. Таким образом, общая прибыль от выпуска кислот составит 25·X1+40·X2 ден.ед. Требуется найти такие значения переменных X1 и X2, при которых эта величина будет максимальной.

Таким образом, целевая функция для данной задачи будет иметь следующий вид:

E = 25·X1+40·X2 → max.

Приведем полную математическую модель рассматриваемой задачи:

X1 ≥ 200

X2 ≥ 100 (1.3)

0,5·X1 + 1,2·X2 ≤ 600

X1 ≥ 0, X2 ≥ 0.

E = 25·X1+40·X2 → max.

В этой задаче имеется два ограничения “больше или равно” и одно ограничение “меньше или равно”. Целевая функция подлежит максимизации.

Ограничение X1 ≥ 200 задается вертикальной линией X1=200. Все точки (X1; X2), расположенные справа от этой линии, удовлетворяют ограничению X1 ≥ 200, расположенные слева – не удовлетворяют. Ограничение X2 ≥ 100 задается горизонтальной линией X2=100. Все точки, расположенные сверху от этой линии, удовлетворяют ограничению X2 ≥ 100, расположенные снизу – не удовлетворяют.

Для построения линии, задающей ограничение 0,5·X1 + 1,2·X2 ≤ 600, удобно записать его в виде равенства: 0,5·X1 + 1,2·X2 = 600. Выразим одну из переменных через другую: X2 = -0,417·X1 + 500. Это уравнение прямой. Построим эту прямую. Она разбивает координатную плоскость на две полуплоскости. В одной из этих полуплоскостей находятся точки, удовлетворяющие ограничению, в другой – не удовлетворяющие. Чтобы найти полуплоскость, удовлетворяющую ограничению 0,5·X1 + 1,2·X2 ≤ 600, подставим в него координаты любой точки, например, (0; 0). Для этой точки ограничение выполняется. Значит, она находится в полуплоскости, удовлетворяющей ограничению.

Пересечение всех полуплоскостей, удовлетворяющих ограничениям задачи, представляет собой ОДР. На рис.2 она выделена цветом.

Рисунок 2. Решение задачи графическим методом

Оптимальное решение находится в одной из угловых точек ОДР (на рис.2 они обозначены как A,B,C). Эти точки можно найти путем решения соответствующих систем из двух уравнений. Найдем значения целевой функции в этих точках:

E(A) = 25·200 + 40·100 = 9000;

E(B) = 25·200 + 40·416,67 = 21666,8;

E(C) = 25·960 + 40·100 = 28000.

Таким образом, оптимальное решение находится в точке C=(960; 100). Это означает, что предприятию следует выпустить 960 т соляной кислоты и 100 т серной кислоты. Прибыль при этом составит 28000 ден.ед. Можно также найти количество опасных отходов, которое будет получено при производстве кислот: 0,5·960 + 1,2·100 = 600 т.


ЗАКЛЮЧЕНИЕ

В рамках данной работы была решена одна из задач линейного программирования. В результате применения процедуры симплекс-метода было получено оптимальное решение поставленной задачи, в соответствии с которым предприятию требуется выпустить 140 тонн удобрения «Флора» и 190 тонн удобрения «Росток». При этом количество неиспользованного аммиака составит 270 тонн, а азотная кислота и калийная соль будут использованы полностью. При этом предприятие получит максимальную прибыль равную 2220 денежных единиц.

После нахождения оптимального решения нами был проведен анализ на чувствительность, входе которого, нами было выявлено, что для улучшения полученного нами результата, предприятию следует увеличить объем запасов древесной плиты до 1400 кв.м, а запас пластмассы до 500 кг, и после этого предприятие сможет увеличить свою прибыль.

Проверка результатов решения задачи в среде MS Excel показала аналогичное решение данной задачи оптимизации.

При выполнении данной работы на примере был рассмотрен графический метод решения задач.

Таким образом, использование экономико-математических методов позволяет существенно повысить эффективность принимаемых управленческих решений, а значит, совершенствует производственно-хозяйственный процесс и обеспечивает предприятиям получение максимальной прибыли.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1.  Замков О.О., Толстопятенко А.В., Черешных Ю.Н. Математические методы в экономике: Учебник. – М.: МГУ им. М.В.Ломоносова, Издательство «ДИС», 1997.

2.  Конспект лекций по предмету «Экономико-математические методы и модели».

3.  Минюк С.А. Математические методы и модели в экономике: Учеб. пособие / Минюк С.А., Ровба Е.А., Кузьмич К.К. – Мн.: ТетраСистемс, 2002.

4.  Смородинский С.С., Батин Н. В. Оптимизация решений на основе методов и моделей математического программирования. Мн.: БГУИР, 2003.

5.  Экономико-математические методы и модели/ Под. ред. А. В. Кузнецова. Мн.: БГЭУ.1999.


Информация о работе «Решение оптимизационных управленческих задач на основе методов и моделей линейного программирования»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 44486
Количество таблиц: 4
Количество изображений: 4

Похожие работы

Скачать
35666
0
0

... проблема" рассматривается как "несоответствие между фактическим и необходимым (желаемым) положением дел в логистизируемой системе, требующее исследования решения (устранения) на основе концепции логистики". Все проекты по логистическому консалтингу уникальны, поскольку цели и задачи логистизации разных предприятий разнообразны, различны бюджеты на осуществление изменений. Это обуславливает ...

Скачать
86484
12
0

... себя почти все методы оценки издержек и экономических выгод, а также относительной рентабельности деятельности предприятия. Типичная «экономическая» модель основана на анализе безубыточности, методе принятия решений с определением точки, в которой общий доход уравнивается с суммарными издержками, т.е. точки, в которой предприятие становится прибыльным. Эти модели широко применяются в бухгалтерском ...

Скачать
90553
11
8

... , которые поддаются математической формализации, моделируя, таким образом, отдельные элементы общего производственного процесса. Конечной целью моделирования производственно-экономической системы является подготовка и принятие руководителем предприятия управленческого решения. Модели производственно-экономических систем можно различать по следующим признакам: – по целям моделирования; – по ...

Скачать
30194
0
0

К ним относятся экономико-статистические методы, методы экономический кибернетики, методы оптимизации и эконометрия. Сфера применения этих количественных методов для решения управленческих проблем ограниченна. Далеко не во всех случаях возможно построить адекватную математическую модель управленческой проблемы и получить ее чисто «машинное» решение. Для более или менее сложных систем такое решение ...

0 комментариев


Наверх