4.2.     Процеси легування

4.3.    

а) легування киснем. При суперпозиції антиструктури з киснем отримаємо такий кристалоквазіхімічний кластер:

(4.5)

Суперпозиція матриці з даним кристалоквазіхімічним кластером приведе до наступного:

(4.6)

Отже, легування (адсорбція) телуриду кадмію киснем приводить до заміщення вакансії халькогена киснем з утворенням акцепторних центрів , що і обумовлює діркову провідність.

б) легування хлором. При суперпозиції антиструктури з хлором отримаємо такий кристалоквазіхімічний кластер за механізмом заміщення:

(4.7)


Суперпозиція матриці з даним кристалоквазіхімічним кластером приведе до наступного:

(4.8)

У випадку вкорінення хлору одержимо такий кластер:

(4.9)

Так як , тоді при суперпозиції основної матриці з кластером (4.9) отримаємо:

 (4.10)

Отже, легування телуриду кадмію хлором приводить до заміщення вакансій телуру хлором і часткового проникнення хлору в ОП підгратки аніону з утворенням акцепторних центрів і діркової провідності. Одержані кристалоквазіхімічні результати не підтверджують донорну дію хлору в CdTe наведену в роботі [23]. Це пояснюється можливим утворенням акцепторних комплексів  і нейтральних , тоді як ізольованих  залишається дуже мало, що і обумовлює донорну дію хлору.

в) легування індієм. З врахуванням донорної дії In в CdTe [23], кристалоквазіхімічний аналіз досліджували за механізмом заміщення атомів індію вакансій кадмію в основній матриці (механізм заміщення) та вкорінення індію у міжвузля, тобто в ТП або ОП порожнини (механізм вкорінення).

Механізм заміщення. Суперпозиція індію із антиструктурою основної матриці утворює кластер:

(4.11)

Враховуючи електронну конфігурацію 4d105s25p1(In) і його зарядовий стан (In+1, In+3, 2In+2«In+3 + In+1) отримаємо:

(4.12)

 (4.12')

При суперпозиції основної матриці з кластером (4.11) одержимо наступні вирази. Кластер (4.12') для спрощення запису опускаємо:


(4.13)

Таким чином, утворений матеріал (5.13) характеризується електронною провідністю, яка обумовлена вакансіями в аніонній підгратці.

За механізмом вкорінення легуючий кластер має вигляд:

(4.14)

При суперпозиції одержимо:

(4.15)

Механізм вкорінення індію (4.15) як і заміщення (4.13) підтверджує його донорну дію. При цьому припускається, що вкорінений індій може знаходитися в зарядовому стані (In+3), займаючи ТП чи ОП основної матриці.

 

5.      Утворення твердих розчинів

Розглянемо криствлоквазіхімічний механізм утворення твердого розчину CdTe-ZnTe з ізовалентним заміщенням. Легуючий кластер має вигляд:

(5.1)

При накладані матеріалу р-типу на кластер (5.1) одержимо:

(5.2)

З виразу (5.2) видно, що цинк буде займати тетраедричні вакансії металу внаслідок чого зменшиться кількість вакансій металу і концентрація основних носіїв.

У випадку утворення твердого розчину CdTe-K2Te з гетеровалентним заміщенням одержимо кластер:

(5.3)

Накладання основної матриці на кластер (5.3) приведе до наступного:

(5.4)

Отже, утворений твердий розчин характеризується вакансіями в аніонній підгратці і n-типом провідності матеріалу.


Информация о работе «Кристалохімія атомних дефектів у напівпровідниках структури сфалериту і в'юрциту.»
Раздел: Физика
Количество знаков с пробелами: 26493
Количество таблиц: 7
Количество изображений: 7

Похожие работы

Скачать
29652
6
18

... (11) 3.4 Аналіз результатів дослідження Експериментальні результати [4-6], які визначають залежність типу провідності легованих CdCl2 кристалів телуриду кадмію від значення парціальних тисків компонентів, із врахуванням кристалохімічної (рис. 1, 2) і кристалоквазіхімічної (1) – (11) моделей можна пояснити наступними чином. Початково синтезовані кристали CdTe, які мають р-тип ровідності [4], ...

0 комментариев


Наверх