2.2 Закон Гесса. Уравнение Кирхгофа

Закон Гесса утверждает:

Тепловой эффект химической реакции зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от её пути.

Из закона Гесса вытекает ряд следствий:

Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции. Из этого следует, что если прямая реакция экзотермическая, то обратная - эндотермическая.

Если совершаются две реакции, приводящие из двух различных начальных состояний (Н1 и Н2) к одному и тому же конечному состоянию (К), то разность между тепловыми эффектами этих реакций равна тепловому эффекту превращения одного начального состояния в другое.

Если совершаются две реакции, приводящие из одного начального состояния (Н) к двум разным конечным состояниям (К1 и К2), то разность между тепловыми эффектами этих реакций равна тепловому эффекту превращения одного конечного состояния в другое.

∆H1 = -∆H2 ∆H12 = ∆H1 - ∆H2 ∆H12 = ∆H1 - ∆H2

Закон Гесса и его следствия позволяют рассчитывать тепловые эффекты некоторых реакций. Гораздо большее значение для расчётов тепловых эффектов любых реакций имеет правило, вытекающее из закона Гесса.

Для расчёта энтальпий реакций при стандартных условиях ∆H298 необходимо знать энтальпии образования реагирующих веществ и продуктов реакции ∆fHo298 . Пусть необходимо рассчитать стандартную энтальпию реакции

n N + m M = d D + g G .

Воспользуемся правилом:

Стандартная энтальпия химической реакции равна разности энтальпий образования продуктов реакции и энтальпий образования исходных веществ с учётом коэффициентов перед веществами в уравнении реакции, т.е.

∆H298=[d∙∆fHo298(D)+g∙∆fHo298(G)] - [n∙∆fHo298(N)+m∙∆fHo298(M)].

Это же правило можно использовать для расчёта стандартных изменений и других функций состояния, например, для расчёта изменения энтропии химической реакции:

∆S298=[d∙So298(D)+g∙So298(G)] - [n∙So298(N)+m∙So298(M)].


В этом случае из таблицы термодинамических величин нужно взять стандартные энтропии веществ So298.

Описанный подход не применим для расчёта изменения функций состояния системы для нестандартных условий, так как отсутствуют необходимые для такого расчёта справочные данные. В этом случае необходимо воспользоваться уравнением Кирхгофа, которое устанавливает зависимость изменения энтальпии или энтропии реакции от температуры:

∆HT = ∆H298 + ∆a∙(T – 298) + ∆b/2∙(T2 – 2982) + ∆c/3∙(T3 – 2983) –∆c’∙(1/T – 1/298),

∆ST = ∆S298 + ∆a∙ln(T/298) + ∆b∙(T – 298) + ∆c/2∙(T2 – 2982) –∆c’/2∙[(1/T2 – 1/2982)] .

Здесь ∆a, ∆b, ∆c, ∆c’ – изменения соответствующих коэффициентов в химической реакции. Для расчёта этих величин необходимо в справочнике найти коэффициенты a, b, c, c’ и рассчитать изменения по общепринятой в термодинамике методике. Например,

∆a=[d∙a(D)+g∙a(G)] - [n∙a(N)+m∙a(M)].

Для расчёта изменения энергии Гиббса ∆G химической реакции следует воспользоваться формулой

∆GT = ∆HT – T ∙ ∆ST ,

где Т – любая (стандартная или нестандартная) температура. При расчётах по последней формуле необходимо использовать значения ∆H и ∆S, соответствующие этой температуре.


2.3 Расчёты изменения термодинамических функций химических реакций

Проведём расчёт изменений энтальпии, энтропии и энергии Гиббса химической реакции

4 СО(г) + 2 SO2(г) = S2(г) + 4 CO2(г)

для стандартной (298К) и нестандартной (500К) температур. Перед началом расчётов необходимо ещё раз убедиться в том, что реакция уравнена.

Рассчитаем сначала ∆H298 , ∆S298 и ∆G298.

∆H298=[∆fHo298(S2)+4∙∆fHo298(CO2)]- [4∙∆fHo298(CO)+2∙∆fHo298(SO2)]=[128,37+4∙ (-393,51)]–[4∙ (-110,53) +2∙ (-296,90)]= - 409,75 КДж.

∆S298=[ So298(S2)+4∙So298(CO2)] - [4∙So298(CO)+2∙So298(SO2)] =(228,03+4∙213,66)–(4∙197,55+2∙248,07) = - 203,67 Дж/К.

∆G298=∆H298–298∙∆S298=-409750 – 298∙(-203,67)= - 349056 Дж.

Расчёт показывает, что изучаемая экзотермическая реакция (знак энтальпии) при стандартных условиях может протекать самопроизвольно (знак энергии Гиббса).

Для расчёта нестандартных величин по уравнениям Кирхгофа требуется рассчитать ∆a, ∆b, ∆c, ∆c’. Для удобства и компактности расчётов составим таблицу 1.


Таблица 1 - Расчёт ∆a, ∆b, ∆c, ∆c’

Номер строки Вещество Cp = f(T), Дж/моль∙К
a b∙103 c’∙10-5 c∙106
1 S2 36,11 1,09 -3,51 0
2 CO2 44,14 9,04 -8,54 0
3 4 CO2 176,56 36,16 -34,16 0
4 ∑кон a,b,c,c’ 212,67 37,25 -37,67 0
5 CO 28,41 4,10 -0,46 0
6 4 CO 113,64 16,40 -1,84 0
7 SO2 46,19 7,87 -7,70 0
8 2 SO2 92,38 15,74 -15,40 0
9 ∑исх a,b,c,c’ 206,02 32,14 -17,24 0
10 ∆a,∆b,∆c,∆c’ 6,65 5,11 -20,43 0

Строки 1, 2, 5 и 7 содержат справочные значения всех коэффициентов. Данные строк 3, 6 и 8 являются результатом умножения чисел в строках 2, 5 и 7 на соответствующий множитель (коэффициент перед данным веществом в уравнении реакции). Цифры в 10-й строке – результат вычитания данных 9-й строки из данных 4-й строки. Коэффициент а для всех веществ имеет истинное значение. Остальные коэффициенты либо увеличены, либо уменьшены в 10n раз. Это сделано для компактности таблицы 1 (общепринятый способ представления табличных данных). Истинные значения коэффициентов b, c, c’ равны значащим цифрам из таблицы 1, умноженным на 10-n, т.е. знак показателя степени множителя следует изменить на противоположный. Коэффициент с для всех веществ изучаемой реакции равен нулю. Рассчитаем ∆H500.

∆H500 = ∆H298 + ∆a ∙ (500–298) + ∆b/2 ∙ ( 5002 – 2982 ) + ∆c/3 ∙ ( 5003 - 2983 ) – ∆c’ ∙ ( 1/500 – 1/298 ) = - 409750 + 6,65 ∙ ( 500 – 298 ) + 5,11 ∙ 103/2 ∙ ( 5002 - 2982) – (-20,43∙105)∙(1/500 –1/298) =-409750+1343+412–2770= -410765 Дж.


Видно, что рассчитанное значение незначительно отличается от стандартного.

Рассчитаем ∆S500.

∆S500 = ∆S298 + ∆a∙ln(500/298) + ∆b∙(500 – 298) + ∆c/2∙(5002 – 2982) – ∆c’/2∙[(1/5002 – 1/2982)] = - 203,67 + 6,65∙ln(500/298)+ 5,11∙10-3 ( 500 – 298 ) - (- 20,43∙105/2) ∙ ( 1/5002 – 1/2982 ) = -203,67 + 3,44 + 1,03 – 7,42 = -206,62 Дж/моль∙К.

Найдём изменение энергии Гиббса ∆G500.

∆G500 = ∆H500 – 500 ∙ ∆S500 = -410765-500∙ (-206,62) = -307455 Дж.

Изучаемая реакция может протекать самопроизвольно и при 500 К.



Информация о работе «Химическая термодинамика»
Раздел: Химия
Количество знаков с пробелами: 26465
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
26681
0
1

... и химическим процессам, происходящим в веществе, в различных системах. Важным достижением на пути этого процесса интеграции знаний было открытие фундаментального закона природы - закона сохранения и превращения энергии. Основатель термодинамики С. Карно в своем труде "Размышления о движущей силе огня и о машинах, способах развивать эту силу" пишет: "Тепло - это не что иное, как движущая сила, ...

Скачать
24251
0
2

... газов в результате реакции. Величина Δn может иметь положительное и отрицательное значения, в зависимости от того, увеличивается или уменьшается число молей газов во время процесса. Применение первого начала термодинамики к процессам в любых системах. Закон Гесса Примем, что единственным видом работы, которая совершается системой, является работа расширения. Подставляя уравнение (II, 5) в ...

Скачать
30347
0
0

... , или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу. Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии. Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях ...

Скачать
11395
1
0

... в ходе реакции мало, т.е. , тогда ; . При термомеханическом описании реакции опускают , , говорят только об изменении энтальпии : Закон Гесса: тепловой эффект химической реакции протекающий или при  или при  не зависит от числа промежуточных стадий, а определяется лишь конечным и начальным состоянием системы.              Тепловой ...

0 комментариев


Наверх