На правах рукописи
ШИШОВА
Марина Александровна
ЭЛЕКТРОДНЫЕ ПРОЦЕССЫ В РАЗБАВЛЕННЫХ
ХРОМСОДЕРЖАЩИХ РАСТВОРАХ И ПУТИ ПОВЫШЕНИЯ
ЭФФЕКТИВНОСТИ ЭЛЕКТРОХИМИЧЕСКОЙ ОЧИСТКИ
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата технических наук
2005
Актуальность проблемы.
Гальваническое производство является одним из самых водопотребляемых. Его сточные и промывные воды содержат ценные и токсичные соединения тяжелых металлов: Сr (VI), Ш, Си и др. Уменьшение расхода воды, извлечение из нее ценных материалов, снижение токсичности являются важнейшими задачами, направленными на повышение экономичности и экологичности производства. При решении данных задач большое внимание уделяется выбору эффективного способа удаления загрязняющих компонентов из промывной и сточной воды. Выбор способа очистки зависит от состава и режима поступления промывных и сточных вод, концентрации загрязнений, возможности повторного использования очищенной воды. Среди различных способов очистки загрязненных вод освоение и внедрение электрохимических технологий является в настоящее время прогрессивным направлением, позволяющим не только очистить воду и вернуть ее в технологический цикл, но и утилизировать твердые отходы. Качество очистки зависит от выбора электродных пар и режима электролиза. При этом основное внимание уделяется материалу катода и процессам, протекающим на нем. Влияние материала анода и скорости анодных процессов на степень удаления загрязняющих компонентов не было принято во внимание при оптимизации технологических параметров электрохимической очистки. Поэтому комплексное изучение катодных и анодных процессов является актуальным в научном и в прикладном планах.
Диссертация выполнена в рамках плановых научных исследований кафедры "Технология электрохимических производств" в соответствии с планом важнейших НИР СГТУ по основному научному направлению "Разработка теоретических основ электрохимических технологий и материалов для химических источников тока" (№ государственной регистрации 01200205598).
Цель работы состояла в обосновании выбора материала анода, катода и соответствующих им технологических параметров электрохимического способа очистки хромсодержащих промывных вод, обеспечивающих оптимизацию процесса.
Для достижения поставленной цели необходимо было решить следующие задачи:
изучить кинетику анодного поведения металлов и графитовых материалов в слабокислых окислительных средах, выявить области потенциалов (и соответствующие им плотности тока поляризации), обеспечивающие работу электродных материалов как нерастворимых анодов;
установить оптимальные технологические параметры анодного растворения железного электрода применительно к электрокоагуляционной очистке;
изучить катодное восстановление Сr (VI) из разбавленных растворов на графитовых и металлических электродах;
разработать технологические рекомендации для электрохимического способа очистки хромсодержащих промывных вод с нерастворимыми анодами, обеспечивающего требования по ПДК (Сг (VI)) в очищенной воде.
Научная новизна работы.
Впервые показано значение адсорбционных процессов на границе раздела электрод (металлический, графитовый) - разбавленный хромсодержащий электролит, моделирующий сточные и промывные воды гальванических производств для обоснования выбора электродных материалов. Установлено, что пленка, пассивирующая поверхности, как катода, так и анода, содержит в своем составе соединения хрома, оксидные формы металлов. Рассчитаны величины адсорбции реагентов и образующихся продуктов реакции в процессе электровосстановления и электроокисления на различных электродных материалах в разбавленных хромсодержащих электролитах. Показано, что кислород, выделяющийся на аноде, влияет на скорость катодных реакций и соответственно на качество электрохимической очистки.
Практическая значимость результатов работы. Разработаны технологические рекомендации по оптимальному режиму использования стальных электродов в электрокоагуляционной очистке хромсодержащих промывных и сточных вод гальванических производств. Предложены электродные материалы и технологические параметры (плотность тока, расстояние между электродами, температура раствора) для электрохимического удаления Сг (VI) из промывных вод путем электролиза с нерастворимыми анодами. Результаты работы апробированы на ОАО "Электроисточник", г. Саратов.
Апробация результатов работы. Основные результаты диссертационной работы доложены на III Всероссийской конференции молодых ученых (Саратов, 2001г), Международной конференции "Композит-2001" (Саратов, 2001 г), Всероссийской конференции СЭХТ-2002 (Саратов, 2002 г), Всероссийской научно-практической конференции (Пенза, 2004 г), III Международной научно-технической конференции "Экология 2004 - море и человек" (Таганрог, 2004 г).
Публикации. По теме диссертации опубликовано 8 работ, из них 2 статьи в центральной печати, 5 в реферируемых сборниках научных трудов и 1 депонирована в ВИНИТИ.
Структура и объем работы. Диссертация состоит из введения, 5 глав, выводов, списка используемой литературы из 196 наименований и приложений.
На защиту выносятся следующие основные положения:
1. Кинетические закономерности поведения анодных и катодных материалов в разбавленных хромсодержащих модельных электролитах.
2. Обоснование выбора электродных материалов, используемых в электрохимической очистке в хромсодержащих промывных водах.
3. Разработка технологических параметров процесса электрохимической очистки с растворимыми и нерастворимыми анодами в разбавленных хромсодержащих растворах.
Основное содержание работыВо введении дано обоснование актуальности темы, рассмотрены цель и задачи исследования, научная новизна и практическая значимость работы.
Глава 1. Литературный обзор
Проанализированы литературные данные по кинетике и механизму анодного растворения металлов в различных средах. Рассмотрены механизмы образования пассивных пленок на электродных материалах и их влияние на скорость анодного процесса. Установлено, что, несмотря на большой интерес к проблеме анодного растворения металлов, данные по анодному поведению материалов в разбавленных слабокислых окислительных растворах отсутствуют. Исходя из актуальности проблемы повышения экологичности и экономичности производства дана сравнительная характеристика различных способов удаления ионов Сг (VI) из промывных и сточных вод. Показана перспективность использования электрохимических способов. Сделан вывод о целесообразности изучения анодных процессов в разбавленных хромсодержащих электролитах, с целью повышения качества электрохимической очистки загрязненных вод.
Глава 2. Методика эксперимента.
Объектами исследования явились электроды из стали (08кп), алюминиевого сплава АМ-6, титана (В), свинца (СО), графитовой фольги "Графлекс" ТУ 5728-00117172478-97 и спектрального графита, модельные электролиты, содержащие 3,4Т и промывные воды гальванических производств ОАО "Электроисточник", г. Саратов, завода им. Урицкого, г. Энгельс. Растворы готовились на основе дистиллированной воды и реактивов марки "х. ч. ". Электрохимические исследования проводили на потенциостате П-5848 с помощью методов вольтамперометрии, хроноамперометрии, хронопотенциометрии. Потенциалы регистрировали относительно 1н хлорсеребряного электрода сравнения. рН модельных хромсодержащих растворов определяли с помощью милливольтметра рН-150М Измерение рН приэлекгродного слоя (pH) проводилось с помощью микросурьмяного электрода (МСЭ). Состав пассивной пленки, полученной в процессе электролиза на различных электродных материалах, определяли методом вторично-ионной масс-спектрометрии (ВИМС). Состояние поверхности оценивалось с помощью микроскопа CAPS ZELSS JENA (IP-20) при увеличении в 500 раз. Воспроизводимость полученных экспериментальных результатов оценивалась с помощью критерия Кохрена. Электролиз в разбавленных хромсодержащих электролитах проводился при использовании в качестве катода - графитового материала, стали 08кп, в качестве растворимого анода - стали (08), нерастворимого анода - свинца, титана, графитовых материалов, при плотности тока iK=iA=2 А/дм2, температуре процесса (20±5) °С, расстояния между электродами не более 5 см. Объем электролита на единицу поверхности составил 0,4 л/дм2.
Глава 3. Результаты эксперимента анодное поведение электродных материалов в разбавленных электролитах, содержащих сг (vi).
... для этого реагентный метод или мембранные методы обессоливания (обратный осмос, электродиализ). По технологическим процессам и, соответственно, применяемому оборудованию, методам очистки сточных вод гальванического производства можно дать следующую классификацию: · механические / физические (отстаивание, фильтрация, выпаривание); · химические (реагентная обработка); · коагуляционно ...
... в нашей стране с 70-х годов, ее использование для решения экологических проблем гальванотехники ранее не приводилось. В тоже время этот метод является достаточно универсальным, высокоэффективным, экологически безопасным и достаточно экономичным. [8, 20] Проблема с осаждения ионов тяжелых и цветных металлов заключается в том, что оптимальное значение рН для различных ионов не одинаково. Так, ...
... при реагентном способе очистки, по предлагаемой технологии извлекаются в виде элюатов и направляются на повторное использование. Таблица 3.1. Показатели очистки хромсодержащих сточных вод по предлагаемой технологической схеме Наименование Единицы Показатели Показатели ГОСТ Степень ингредиентов измерения до очистки после ...
... Затем детали промывают в горячей проточной воде, производят промывку и активацию. В ванне каскадной промывки происходит противоточная двухступенчатая холодная промывка. Для осаждения цинковых покрытий применяют различные электролиты: кислые, цианистые, аммиакатные, цинкатные и др. В аммиакатном электролите цинк находится в виде комплексных катионов. Аммиакатные соединения цинка получаются при ...
0 комментариев