1.4 Замедление дымообразования
Процесс дымообразования при горении полимерных материалов очень важен с точки загрязнения окружающей природной среды. Так, образование сажистого дыма является наиболее типичным при горении полимерных материалов. Кроме этого при горении полимерных материалов в атмосферу поступают различные продукты горения, которые зачастую бывают вредные и токсичные. В свою очередь образование сажистого дыма означает неполноту сгорания органической составляющей. Антипирены, позволяющие снизить горючесть полимерных материалов, чаще всего приводят к увеличению их сажеобразующей способности. Достаточно трудно одновременно снизить горючесть и сажеобразование при горении полимерных материалов. Подавление сажеобразования при горении газовых систем осуществляется путем изменения соотношения между топливом и окислителем, аэродинамических условий потоков, а именно увеличения скорости окислителя. При этом реализуется более полное сгорание горючего. Аналогична ситуация и в случае большинства полимерных материалов.
В случае полимерных систем образование дыма зависит, прежде всего, от условий выделения летучих продуктов и их состава. Влияние различных факторов на дымообразование полимеров показано в работе [28].
Для снижения дымообразования используют различные соединения металлов: цианид и тиоцианат меди, окись железа, смеси порошкообразного железа с окисью меди или молибдена, смеси окисей меди, молибдена и ванадия. Эффективно также использовать кислородсодержащие добавки кислотного типа.
Обогащение кислородсодержащими веществами летучих продуктов уменьшает их сажеобразующую способность в результате не только появления источника дополнительного кислорода в пламени, но и склонности кислородсодержащих соединений к захвату электрона и образованию отрицательных ионов. Рекомбинация последних с положительными углеводородными ионами - зародышами сажевых частиц - снижает вероятность энуклеации сажи.
При применении металлсодержащих веществ возможны альтернативные воздействия: а) добавки влияют на пиролиз полимера таким образом, что изменяется состав летучих или растет выход коксовых остатков; б) добавки в результате превращений в конденсированной фазе образуют при горении соединений летучие, которые переходят в газовую фазу и подавляют сажеобразование.
1.5 Основные антипирены, применяемые для повышения огнестойкости полимеров
Антипирены (АП) - это вещества, которые влияют на химию процессов в конденсированной или газовой фазе, или на поверхности раздела фаз. Антипирены препятствуют горению полимерных материалов и относятся к важнейшим компонентам пластмасс. При горении полимерных материалов внутри и на поверхности конденсированной фазы происходят сложные физико-химические процессы, в результате которых полимер превращается в нагретые до высокой температуры продукты сгорания.
Предохраняющее действие антипиренов определяется:
низкой температурой их плавления с образованием плотной плёнки, преграждающей доступ кислорода к материалу;
разложением антипиренов при нагревании с выделением инертных газов или паров, затрудняющих воспламенение газообразных продуктов разложения предохраняемого материала;
поглощением большого количества теплоты на плавление, испарение и диссоциацию антипиренов, что предохраняет пропитанные материалы от нагревания до температуры их разложения;
повышенным углеобразованием пропитанных материалов при их термическом разложении за счёт образующихся кислот.
В подавляющем большинстве воздействие антипиренов на горение полимерных материалов является множественным. В структуре антипирена могут одновременно присутствовать элементы пламегасящего действия и группы, которые способны оказывать влияние на ход пиролиза полимеров и гетерогенное окисление.
Эффективные замедлители горения, действие которых проявляется в зоне пиролиза в поверхностном слое, должны способствовать образованию коксового слоя на 80 % поверхности материала. При слоистом строении замедлителей горения или огнезамедлительных систем и хемосорбции на этих слоях макромолекул полимера, как представлено ранее, возможно образование «заготовок» углеродного слоя, процентное содержание которых равно процентному содержанию закоксованной поверхности.
Рассмотрим механизм ингибирования реакций в пламени в присутствии различных добавок: а) галогенсодержащие органические соединения
Для снижения горючести полимерных материалов чаще всего применяют галогенсодержащие соединения [8, 9, 29]. Они бывают трех типов: соединения с алифатической или циклоалифатической структурой. Природа и число атомов галогена в каждом типе структуры варьируется.
В качестве антипиренов используют низко- и высокомолекулярные соединения. Широко применяется декабромдифенилоксид (ДБД), гексабромциклододекан (ГБЦД), которые снижают температуру горения за счет протекания сложного комплекса радикальных реакций (механизм см. ниже). Они практически полностью заменили в рецептурах трудногорючих композитов устаревшие виды антипиренов - гексабромбензол, хлорпарафин. ГБЦД более эффективен, особенно в полистирольных пластиках, но применение его ограничено из-за низкой температуры разложения. Однако его термостойкость можно поднять до 220 - 23 0 °С, стабилизируя ГБДЦ стеаратами тяжелых металлов. Здесь важно отметить, что данные антипирены с точки зрения экологии уступают достаточно сильно гидроксидам, т.е. они летучи при повышенных температурах.
Эффективность замедления пламенных реакций галогенсодержащими соединениями одинакового строения, различающимися природой галогена, как известно [30], растет в последовательности F < CI < Вг < I.
В зависимости от строения галогенсодержащие соединения подвергаются пиролизу либо в конденсированной фазе, либо испаряются и деструктируют уже в газовой фазе. В свою очередь это обстоятельство приводит к загрязнению окружающей природной среды. В частности, первичные реакции пиролиза галогенсодержащих соединений приводят, как правило, к образованию НХ и RXn, реже - Х2, где X - атом галогена. Однако отщепление НХ от макромолекул алифатической структуры сопровождается чаще всего образованием ненасыщенных систем. Превращения последних в конденсированной фазе обуславливают образование нелетучего карбонизованного остатка, что, в конечном счете, сказывается на скорости горения материала [31].
Зависимость эффективности ингибирующего действия вещества от природы галогена, влияние малых концентраций добавок подтверждают, что механизм ингибирования воспламенения и горения модельных w*— их производными имеет химическую основу. Установлено, что галогены и их соединения не влияют на окисление углерода до окиси углерода.. В то же время они существенно ингибируют окисление СО до С02.
Для объяснения наблюдаемых эффектов ингибирования пламенных режут производными галогенов в свое время были предложены различные механизмы. В их основе заложено участие различных галогенсодержащих молекул, атомов или ионов галогена в разных стадиях радикального цепного процесса горения. Как приводится в работе [3], ингибирование пламени обусловлено реакциями с участием атомов кислорода и образованием промежуточных соединений - оксигалогенов:
Оксигалогены быстро реагируют с активными центрами Н и ОН, снижая их концентрацию и тормозя, таким образом, скорость процесса окисления.
Некоторые исследователи отводят большую роль в ингибировании пла мени галогенсодержащими соединениями заряженным частицам Х~ [3]. Так, пламени при атаке электрона галогенсодержащие соединения диссоциирую образуя отрицательный ион галогена и радикал:
соединения металлов
В качестве антипиренов используют соли, окислы, гидроокиси и органические производные металлов [33].
Наиболее широко используемый недорогой антипирен А1(ОН)3 [34, 35]. Его потребление в мире составляет 43 % по объему из всего количества антипиренов. Сдерживает его использование низкая термостойкость - до 190 °С, при более высоких температурах он разлагается с выделением большого количества воды. Для достижения необходимой огнестойкости приходится вводить гидро-ксид алюминия в полимер в больших количествах (50 - 70 %). А1(ОН)3 за счет выделения воды поглощает тепло сгорания, подавляет выделение дыма и снижает долю кислорода в прилегающем к изделию слое. Служит также экономичным наполнителем. Используется главным образом в электроизоляционных и кабельных изделиях на основе ПЭ и сополимеров этилена. Чтобы снизить отрицательное влияние высокого наполнения на физико-химические свойства материала, используют тонкодисперсные поверхностно модифицированные марки А1(ОН)3, обработанные стеариновой кислотой или органосилановыми аппретами.
Гидроксид магния Mg(OH)2 имеет более высокую термостойкость -332°С, используется в тех полимерах, где нужна высокая температура переработки [34, 35]. Более эффективен по сравнению с гидроксидом алюминия, менее абразивен, уровни ввода его ниже. Хотя по западной литературе он считается более выгодным, но в России он дороже, собственное производство отсутствует и используется гидроксид магния значительно реже. Гидроксиды лучше подавляют дымовыделение по сравнению с бромсодержащими антипиренами.
Большинство из них обладают низкой упругостью паров, что исключает присутствие в газовой фазе в нормальных условиях горения. Поэтому механизм их действия чаще всего связан с процессами, протекающими в конденсированной фазе.
Исследование ингибирования углеводородного пламени различными соединениями показало, что некоторые соединения металлов более эффективно замедляют развитие процесса горения, чем галогенсодержащие органические соединения [36]. Эффективность замедления горения зависит не только от природы металла, но и от природы субстрата.
Ингибирующее действие металлсодержащих соединений связывают с участием последних в катализе гибели активных центров (атомов и радикалов), ответственных за развитие цепного процесса горения веществ. При этом осуществляется ли в присутствии соединений металлов гомогенный или гетерогенный механизм гибели активных центров, зависит от многих факторов.
Сторонники гомогенного механизма ингибирующего действия соединений металлов полагают, что последние в пламени испаряются, разлагаются и образуют активные промежуточные формы соединений. Такой активной формой являются, например, гидроокиси металлов. В частности, гидроокиси щелочных металлов легко образуются в пламени при разложении солей металлов в присутствии паров воды. В богатых топливом пламенях взаимодействие щелочных металлов с парами воды (продуктом сгорания) может протекать по равновесной реакции:
Следует отметить, что в бедных топливом пламенях образование активных промежуточных металлсодержащих частиц осуществляется в результате непосредственного окисления щелочных металлов. При этом образуется надо-кись металла:
В свою очередь надокись металла легко реагирует с активными центрами процесса горения, образуя более стабильные, но активные соединения:
Последние далее реагируют с активными центрами процесса горения.
Главной особенностью монтмориллонита является его способность к адсорбции различных ионов (в основном катионов), а также к ионному обмену. С водой образует пластичные массы, при этом, разбухая, может увеличиваться в объеме в 10 раз. Входит в состав бентонитовых глин (слово «бентонит» - происходит от названия местности Бентон в США) [48].
Неорганические слои глин образуют скопления с зазорами между ними, называемыми прослойками или галереями. Изоморфное замещение внутри слоев (Mg2+ замещает А13+ в октаэдрической или А13+ замещает Si4+ в тетраэдрической структурах) генерирует отрицательные заряды, которые электростатически уравновешиваются катионами щелочных или щёлочноземельных металлов, расположенных в прослойках (рис. 1.1.). Этим обусловлена высокая гидрофильность бентонита. При помещении бентонита в воду, она проникает в межслоевое пространство монтмориллонита, гидратирует его поверхность и обменные катионы, что вызывает набухание минерала. При дальнейшем разбавлении водой бентонит образует устойчивую вязкую суспензию с выраженными тиксотропными свойствами.
Монтмориллонит обладает высокими катионообменными и адсорбционными свойствами, которые наиболее выражены у бентонитов, монтмориллонит которых содержит преимущественно обменные катионы натрия.
... каучука и/или сополимера бутадиена и акрилонитрила (1) или стирола (2). Используемый АБС содержит 1 и 2 в отношении от 15:85 до 60:40 [73]. Производство и применение ПБТ, его сополимеров и композиционных материалов на их основе Благодаря сочетанию физико-химических, механических и диэлектрических свойств и высокой скорости кристаллизации ПБТ широко используют для изготовления деталей ...
... с наполнителями. С возрастанием удельной поверхности наполнителей [12,14] адгезионное взаимодействие, как правило, усиливается, поскольку в присутствии высокомолекулярных наполнителей возрастает объем полимера, иммобилизованного в граничные слои, по сравнению с низкодисперсными наполнителями. Это проявляется в повышении температуры стеклования (Тс) образцов. Содержащих наполнители с высокой ...
... эффект за счет полной автоматизации процесса литья под давлением термопластов без применения промышленных роботов и манипуляторов. Техническое перевооружение заводов, перерабатывающих пластические массы, предусматривает поэтапную замену маломощного оборудования и малогнездной оснастки более производительным литьевым оборудованием и новой горячеканальной многогнездной и многовпускной безотходной ...
0 комментариев