2.1 История открытия элемента

Молибденит (дисульфид молибдена, MoS2) был известен древним грекам и римлянам с незапамятных времен [1, 12]. Этот свинцово-серый с металлическим блеском минерал (другое название – молибденовый блеск) сходен с галенитом (свинцовым блеском, PbS) и графитом. Мягкость минерала позволяла использовать его (вместе с графитом) как грифель для карандашей, поэтому долгое время молибденит путали с галенитом и графитом, хотя, в отличие от последнего, он оставлял на бумаге зеленовато-серый цвет. В средневековой Европе три минерала (PbS, MoS2 и графит) имели одно название – Molybdaena. История открытия элемента № 42 связана со Швецией. В 1758 шведский минералог и химик Аксель Фредерик Кронштедт (1722–1765) высказал предположение, что графит, галенит и молибденовый блеск три самостоятельных вещества [12]. Двадцать лет спустя, в 1778, химическим составом молибденита заинтересовался шведский химик Карл Вильгельм Шееле. Прокипятив его с концентрированной азотной кислотой, он получил белый осадок «особой белой земли», которую назвал молибденовой кислотой. Хотя во времена Шееле и не знали, что «земли» представляют собой оксиды металлов, уникальная химическая интуиция подсказывала ему, что металл можно получить прокаливанием молибденовой кислоты с углем. Экспериментальные трудности (у него не было подходящей печи) не позволили Шееле самостоятельно решить эту задачу и лишь в 1782 шведскому химику Петеру Якобу Гьельму, которому Шееле прислал образец молибденовой кислоты, удалось восстановить ее углем и получить королек металла (сильно загрязненного карбидами) [12, 17, 18]. После удачно проведенного опыта Шееле писал Гьельму: «Радуюсь, что мы теперь обладаем металлом – молибденом!». Относительно чистый металл удалось получить много лет спустя Йенсу-Якобу Берцелиусу в 1817 [18]. Совершенно чистый молибден, способный к ковке, получили лишь в начале 20 века [14].

2.2 Физические свойства молибдена

Внешний вид металлического молибдена зависит от способа его получения. Компактный (в виде слитков, проволоки, листов, пластин) молибден – довольно светлый, но блеклый металл, а молибден, полученный в виде зеркала разложением, например, карбонила – блестящий, но серый [20, 23]. Молибденовый порошок имеет темно-серый цвет. Плотность молибдена 10280 кг/м3. Температура плавления 2623° С, кипения 4639°С [ 6, 16]. Основные физические свойства молибдена приведены в таблице 1.

Таблица 1. Основные физические свойства молибдена

Атомный радиус, А° 1,36

Грамм-атомный объем, см3

9,41
Ионный радиус, А:

Мо2+, А

1,01

Мо4+ , А

0,68

Мо6+ , А

0,5 – 0,62

Плотность, г/см3

10,21
Т. пл., °С 2622±10
Т. кип., °С ~ 4864
Кристаллическая решетка

Пространственно-центрированная

кубическая

Потенциал ионизации, В

7,2 (Мо0→ Мо1+)

Поперечное сечение захвата тепловых нейтронов, барн/атом 2,7

Известна только одна (при обычном давлении) кристаллическая модификация металла с кубической объемно центрированной решеткой. В совершенно чистом состоянии компактный молибден пластичен, ковок, тягуч, довольно легко подвергается штамповке и прокатке. При высоких температурах (но не в окислительной атмосфере) прочность молибдена превосходит прочность большинства остальных металлов. При загрязнении углеродом, азотом или серой молибден, подобно хрому, становится хрупким, твердым, ломким, что существенно затрудняет его обработку. Водород очень мало растворим в молибдене, поэтому не может, заметно влиять на его свойства. Молибден – хороший проводник электричества, он в этом отношении уступает серебру всего в 3 раза. Электропроводность молибдена больше, чем у платины, никеля, ртути, железа и многих других металлов [20]. В обычных условиях молибден устойчив даже во влажном воздухе.

2.3 Природные соединения молибдена

Из 17 известных минералов Мо наиболее существенное промышлен­ное значение до сих пор имеет молибденит MoS2 [20]. Из руд, содержащих молибденит, добывают подавляющую массу молибдена. В зоне окис­ления молибденовых, медно-молибденовых и вольфрамо - молибденовых месторождений встречаются повеллит, молибдит (ферримолибдит) Fe2Os∙3MoO3∙7H2О молибдошеелит Са(Мо,W)O4, вульфенит РЬМоО4, чиллагит Pb(Mo, W)O4, линдгренит Си3(МоО4)2(ОН)2 и другие комплексные минералы (с висмутом, мышьяком, оловом и т. д.) Первые три минерала последнее время приобретают некоторое про­мышленное значение [23]. Это связано с тем, что по мере выработки бога­тых чисто сульфидных молибденовых и комплексных месторождений начинают разрабатываться месторождения смешанных сульфидно-окисленных руд. В сульфидных месторождениях окисленные минера­лы встречаются как в виде пленок на молибдените, так и в виде само­стоятельных кристаллов вторичного происхождения.

Молибденит – минерал черного цвета, внешне очень похо­жий на графит. Имеет чешуйчатое строение. Кристаллизуется в гекса­гональной слоистой решетке [20]. При нормальной темпера­туре химически устойчив. Начинает окисляться на воздухе выше 300 – 400°С. При 500 – 550°С сгорает полностью до МоО3 и частично до МоО2. При более высокой температуре получающийся МоО3 возгоняется и, охлаждаясь, образует друзы бледно зеленоватых игл. Плотность ми­нерала 4,75, твердость по Моосу 1. Молибденит обладает хорошими смазывающими свойствами. Постоянная примесь в нем – рений.

Повеллит – наиболее распространенный минерал зоны окисления молибденовых месторождений. Серый. Плотность 4,3, твердость
по Моосу 3,5. Кристаллизуется в бипирамидах тетрагональной системы. При облучении ультрафиолетовым излучением люминесцирует. Это может использоваться в анализе и обогащении руд. Цвет люминесценции желтый. Очень хрупок и поэтому переизмельчается при дроб­лении.

Молибдо - шеелит – разновидность шеелита, в которой часть атомов W замещена атомами Мо (обычно не выше нескольких процентов). Разности, содержащие до 15% Мо, носят название зейригит [20, 23]. Кристаллы молибдо - шеелита, как и повеллита, - тетрагональ­ные бипирамиды. Плотность 5,8—6,2, твердость по Моосу 4,5. Мине­рал, содержащий более 0,5% W, в ультрафиолетовых лучах люмине­сцирует желтым цветом.

Молибдит Fe2(MoO4)3∙7H2O, или Fe2O3∙xMoO3∙yH2O, - чешуйчатый, мягкий минерал серо-желтого цвета. Образуется в участках месторождений, содержащих большое количество железных мине­ралов.

Вульфенит РЬМоО4 – минерал тетрагональной сингонии. Образует буро-коричневые или красные бипирамиды.

Другие минералы молибдена встречаются, в частности, в урановых полиметаллических месторождениях, осадочных породах органическо­го происхождения.

Промышленные молибденовые руды делятся по форме рудных тел и минеральному составу на жильные (кварцевые), прожилково-вкрапленные (медно-молибденовые, медные порфировые, с молибденом) и скарновые (молибденовые, волъфрамо-молибденовые, медно-молибденовые). Ранее наибольшее значение имели кварцевые жильные месторождения. Среднее содержание молибдена в них было 0,3 – 0,4% и до 1 %. Они в ос­новном выработаны. Сейчас наибольшее значение имеют молибденовые, медно-молибденовые и медно-порфировые месторождения прожилково-вкрапленного типа, а также скарновые. В первых молибдена 0,05 – 0,15%, а в наиболее крупных (Клаймакс, США) – до 0,4% [20]. Вкрапленность молибдена в них значительно более мелкая, чем в жилах. Сопутствующие рудные минералы – халькопирит, пирит, реже дру­гие сульфиды, арсениды, магнетит. Как из медно-молибденовых, так и из медно-порфировых руд молибден добывают попутно с медью. Это экономически выгодно и в случае очень низкого содержания моли­бдена.

Скарновые руды – это руды, образовавшиеся на контакте извест­няков и кислых пород типа гранитов. Сопутствующие рудные минералы в них те же, что и в предыдущих типах руд. Но особенно обычен комп­лекс с шеелитом и другими вольфрамсодержащими минералами. Из нерудных минералов преобладают кварц, кальцит, флюорит. Оболоч­ки вторичных окисленных образований осложняют обогащение суль­фидной руды. Обогащение осложняется также мелкой вкрапленностью сульфидных минералов, большим содержанием кальцита, доломита, флюорита.


Информация о работе «Получение молибдена из отходов промышленности»
Раздел: Химия
Количество знаков с пробелами: 77848
Количество таблиц: 3
Количество изображений: 3

Похожие работы

Скачать
31727
0
3

... из отработанных катализаторов и химических остатков [16]. 3.3 Молибден из колошниковой пыли плавильных печей Этот процесс, разработанный X. Кастанья, предназначен для выделения молибдена в виде молибденовой кислоты из отходов, в частности, из отработанных катализаторов, содержащих носитель - у-оксид алюминия и молибден в виде оксида или сульфида. Процесс включает обработку отходов ...

Скачать
36871
18
2

... молибдена и др. Эти материалы могут быть использованы в качестве легирующие компоненты для выплавки легированных чугуну и стали. Результаты исследований [11] показали, что использование отработанных никелевых катализаторов позволяет получать заготовку шихты с содержанием никеля 11 % и ванадию 3 % при одношлаковом режиме плавки.   1.2 Особенности редкофазной обновительной плавки.   Выполненный ...

Скачать
86209
0
14

... отходам производства. В докладе «О состоянии окружающей природной среды Российской Федерации в 1997 году» Государственного комитета Российской Федерации по охране окружающей среды отмечается, что на начало 1997 г. на предприятиях различных отраслей промышленности накоплено 1431,7 млн. т токсичных отходов. За 1997 г. на промышленных предприятиях РФ образовалось 89,4 млн т токсичных отходов, из ...

Скачать
55619
11
1

... . Заражение радиоактивными веществами и происходило ранее при воздушных и подводных испытаниях атомных бомб, а сейчас может произойти — при авариях атомных подводных лодок. Усиливается загрязнение природной среды твердыми промышленно-бытовыми отходами. Это вышедшие из употребления упаковочные матери­алы, бытовые и промышленные приборы, машины, бумага, консервные банки и, бутылки, остатки пищи, ...

0 комментариев


Наверх