2.8 Экологическое влияние отходов молибденовой промышленности

При переработке молибденовых руд большое количество молибдена теряется на разных этапах переработки сырья. При этом возможно как отравление персонала работающего на предприятии так и негативное влияние на природу.

Токсичность молибдена проявляется при поступлении молибдена более 15 мг в сутки. При поступлении таких количеств молибдена наблюдаются следующие симптомы:

истощение, токсикоз;

подагра (при сопутствующем дефиците кальция);

нарушение функций иммунитета;

изменение функций костного мозга, тимуса, селезенки;

хронический профессиональный молибденоз (повышение содержания мочевой кислоты и молибдена в сыворотке крови, артрозы, гипотония, анемия и лейкопения, желудочно-кишечные заболевания, атаксия, резкие нарушения обмена веществ).

«молибденовая подагра» (болезнь Ковальского), которая часто встречается в Армении.

При поступлении молибдена в больших количествах он усваивается растениями, растения содержат молибден в листьях и побегах. При этом они становятся токсичны. Растения имеют свойство извлекать и концентрировать молибден в зеленой массе, поэтому его содержание в ней будет выше, чем в почве. Это приведет к отравлению молибденом животных. Поэтому отвалы после переработки молибденовых руд следует покрывать слоем земли для упреждения разноса ветром породы. Также такие отвалы следует изолировать от грунтовых вод, поскольку молибден может просачиваться в грунтовые воды и отравлять их [1, 3].


Глава 3. Методы и методики получения молибдена и его соединений

3.1 Основы технологии переработки молибденовых руд

Основной метод обогащения молибденовых руд – флотация. Наи­более просто обогащаются руды жильных кварц молибденовых место­рождений. В результате первоначальной коллективной флотации получают концентрат с 5 – 10% Мо [2, 8]. Селективную флотацию молибде­нита проводят затем при подавлении флотации других сульфидов. После переочисток получают стандартный концентрат с 80 – 90% MoS2 при общем извлечении до 90 – 95 % и выше. Низкосортные молибденовые концентраты и промежуточные про­дукты подвергают «химическому» обогащению, иначе говоря, гидрометаллургической переработке с получением в итоге молибдата каль­ция для ферросплавной промышленности. Такая комбинация флота­ционного обогащения и гидрометаллургической обработки позволяет экономичнее достигать большего извлечения молибдена из руды, чем это можно было бы сделать флотационными методами. Концентраты, содержащие молибден в виде молибденита, обрабатывают, прежде всего, для окисле­ния серы сульфидов. С этой целью в промышленности наиболее часто прибегают к окислительному обжигу. Вместо обжига может применять­ся малораспространенная в заводской практике обработка сильными окислителями в водной среде: азотной кислотой, гипохлоритом, кисло­родом или воздухом под давлением, либо хлорирование [8]. Огарки, полу­чаемые после обжига богатых и чистых концентратов, используют в производстве ферромолибдена, для получения чистой трехокиси мето­дом возгонки и для химической переработки на чистые соединения молибдена. Последние, в свою очередь, могут использоваться для полу­чения металла высокой чистоты. Огарки от обжига более бедных, низко­сортных концентратов и промпродуктов обогащения обязательно под­вергают химической переработке. В процессе обжига до 30 – 40% Мо и основная масса Re переходят в пыль и газы.

Первичная обработка в окисляющих растворах может быть при­менена для любых концентратов. Растворы, полученные после окисли­тельного выщелачивания концентратов, очищают от примесей, после чего из них выделяют необходимые соединения молибдена и рения. Из полученных растворов чистые молибденовые и рениевые соедине­ния могут быть селективно выделены ионообменом или экстракцией.

3.2 Получение парамолибдата аммония (NH4)6Mo7O24 × 4H2O

Химическую переработку «огарков» после обжи­га богатых высококачественных концентратов производят с целью полу­чения чистых соединений молибдена – парамолибдата аммония и молибденового ангидрида [20, 23]. Из этих последних в случае необходимости легко получить любые другие соединения, в том числе и соединения вы­сокой чистоты. Молибденовый ангидрид, находящийся в огарке, раство­ряется в растворах аммиака, щелочей, соды, некоторых кислот. Но щелочные металлы – нежелательные примеси для соединений молиб­дена, применяемых в электротехнической и химической промышлен­ности. В щелочах, соде и кислотах растворяется большое число и дру­гих примесей.

Раствор аммиака обладает тем преимуществом, что в нем не растворимо большинство примесей, сопутствующих молибдену в огарке. По­этому аммиачный способ переработки богатых молибденовых огарков более распространен. Его преимуществами, помимо высокого извлече­ния МоО3 в раствор и достаточно полного отделения примесей, явля­ются простота дальнейшей очистки аммиачного раствора, легкость вы­деления молибдена в виде чистого парамолибдата аммония, простота подбора материала для аппаратуры. Схема аммиачного метода пере­работки огарков после обжига молибденита представлена на рис.3

Рис. 3. Cхема переработки огарков с кислотным разложение хвостов выщелачивания

Перед обработкой раствором аммиака рекомендуется промывать огарок водой для удаления растворимых в воде сульфатов (CuSO4, части CaSO4 и др.) и солей щелочных металлов. Но так как при этом несколько теряется молибден, то промывают не всегда. Потеря молиб­дена при промывке достигает 4 – 5% [20].

При обработке огарка аммиаком происходят реакции:

MoO2 + 2NH4OH = (NH4 )2МоО3 +H2О

CuO + 4NH4OH = [Cu(NH3)4](OH)2 + 3H2O

CuMoO4 + 6NH4OH = [Cu (NH3)4] (OH)2 + (NH4)2 MoO4 + 4H2О

ZnMoO4 + 6NH4OH = (NH4)2 MoO4 + [Zn (NH3)4] (OH)2 + 4H2O NiMoO4 + 6NH4OH = (NH4)2 MoO4 + [Ni (NH3)4] (0H)2 + 4H2O

Аналогично молибдатам реагируют сульфаты меди, цинка, никеля и железа, если они образовались при обжиге. Железо (II) (в составе сульфата или окиси) частично реагирует по уравнению

FeSO4 + 4NH4OH → [Fe (NH3)4] SO4 + 4H2О

и переходит в раствор в составе комплекса. Железо (III), образующееся в результате окисления Fe2+ кислородом воздуха при обжиге и выщелачивании, частично остается в составе химически стойкого Fe3O4, частично дает нерастворимую гидроокись Fe(OH)3.

Остаются без изменения МоО2, СаМоО4, кварц, неокислившиеся при обжиге сульфиды. В аммиачные растворы в зависимости от минерало­гического состава концентрата и условий обжига переходит 80 – 95% молибдена. Для более полного перевода молибдена в раствор добавля­ют 60 – 80 кг (NH4)2CO3 на 1 т огарка. Влияние карбоната аммония на извлечение молибдена связано со следующими реакциями:

CaSО4 + (NH4)2 MoO4 → CaMoO4 + (NH4)2 SO4

CaSО4 + (NH4)2 CO3 → Ca CO3 + (NH4)2 SO4

Растворимость CaSO4 и СаМоО4 соответственно 2 и 0,028 г/л при 20°С. Поэтому реакция смещена в сторону образования СаМоО4. Без добавки (NH4)2CO3 в процессе выщелачивания раствором аммиака сульфат кальция, образовавшийся в огарке в ходе обжига, превраща­ется в СаМоО4, устойчивый в аммиачных растворах. Добавка (NH4)2CO3 ведет к образованию СаСО3 из CaSO4. Возможно и частичное растворение СаМоО4:

СаМоО4 + (NH4)2 CO3 = (NH4)2 МоО4 + СаСО3

Осаждение СаСО3 на частицах CaSO4 затрудняет растворение последнего [20]. Осаждение его же на зернах СаМоO4 прекращает растворение последнего. Кроме того, благодаря наличию ионов СО в растворе в отвальные хвосты переходит не гидроокись железа, а карбонат, ко­торый меньше адсорбирует молибден. Это снижает переход молибдена в остатки от выщелачивания. Сухой остаток после выщелачивания и сушки составляет 10 – 30% от массы огарков. В нем 5 – 25% Мо. Поэтому на заводах дополнительно обрабатывают остаток по особой схеме.

В заводских условиях огарок выщелачивают 8 – 10%-ным раство­ром аммиака при 20 – 60° С [23]. Процесс проводят во вращающихся горизонтальных герметических стальных барабанах с шарами или в вертикальных реакторах с мешалками. Вращающиеся герметические барабаны более экономичный по извлечению молибде­на, и по расходу аммиака процесс. Процесс в обоих случаях периодический и идет в несколько стадий, хотя в принципе возможна организация не­прерывного или полунепрерывного выщелачивания в каскадах герметизированных реакторов. Раствор с первых стадий поступает на очистку и дальнейшее извлечение молибдена. Слабые растворы и промывные воды поступают на первую стадию. Общий расход аммиака на всех стадиях в зависимости от состава концентрата и аппаратуры колеблется в пределах 115 – 140% от теоретически необходимого количества. В крепких растворов плотность более 1,1 г/см3,они содержат 140 – 190 г/л МоО3. Остатки от выщелачивания отфильтровывают на фильтрах не­прерывного или периодического действия [8].

В последнее время предложено выщелачивать огарки аммиаком в кипящем слое. Это интенсифицирует выщелачивание и может осу­ществляться в непрерывном процессе.

Концентрированные растворы после фильтрования очищают от тя­желых металлов, осаждая их в виде сульфидов:

Me2++NH4HS = MeS + NH4+ + H+

где Ме2+ - Cu2+, Pb2+.

Fe2+ частично осаждается в виде FeS, частично захватывается осадком других сульфидов. Благодаря очень малому произведению растворимости сульфидов, все тяжелые металлы осаждаются практичес­ки полностью. Это, в частности, можно наглядно наблюдать по исчезновению характерной интенсивной сине-фиолетовой окраски раствора. характерной для медно-аммиачного комплекса..

Из очищенного аммиачного раствора молибден может быть выделен:

1) кристаллизацией парамолибдата аммония;

2) осаждением тетрамолибдата;

3) осаждением молибденовой кислоты;

4) осаждением СаМоО4:

7(NH4)2МоО4 =3(NH4)2О• 7МоО8 ∙ 4Н2О + 8NH3

4 (NH4)2 MoO4 + 5H2O = (NH4)2О ∙ 4MoO3 ∙ 2H2O + 6NH4OH (NH4)2 МоO4 + 2HNO3 = Н2МоО4 + 2NH4NO3

(NH4)2 MoO4 + СаС12 = CaMoO4 + 2NH4C1

Кристаллизацию парамолибдата производят в несколько стадий. После первых стадий получается наиболее чистый продукт, но с не­большим выходом. Увеличения выхода достигают дальнейшей, более глубокой кристаллизацией, но при этом продукт получается более низкого качества. Молибденовая кислота частично растворима в кис­лотах и выделяется в виде трудно отстаивающихся и трудно промывае­мых осадков. Осаждение тетрамолибдата дает высокое извлечение молибдена и богатый молибденом продукт. Осадок его лучше отстаивается, но продукт требует переочистки. Осаждение СаМоО4 из аммиачных растворов нерационально, так как он применяется лишь при выплавке ферромолибдена и может быть получен более простым путем. Для других же целей требовалась бы дальнейшая химическая переработка СаМоО4. Введение иона Са2+ усложняло бы дальнейшую очистку со­единений молибдена.

Для осаждения парамолибдата аммония аммиачный раствор упа­ривают до 400 г/л МоО3, что соответствует плотности раствора 1,40 г/см3. В производственных условиях выпаривают сначала до плотности 1,20 – 1,23 г/см3. После этого дают отстояться дополнительно выпав­шему осадку сульфидов Cu(II), Fe(II), Pb(II) и гидроокиси железа. Осадок отделяют, раствор упаривают далее. Горячий раствор фильт­руют и направляют в кристаллизаторы. Кристаллизовать рациональ­нее при перемешивании и искусственном охлаждении. При этом выде­ляются более мелкие кристаллы, но процесс протекает быстрее. После первых двух операции получают продукт наивысшей чистоты [9, 17]. По­следующие кристаллы более грязны. Их либо направляют на пере­кристаллизацию, либо квалифицируют более низшим сортом. Выпа­ривают и кристаллизуют в аппаратуре, стойкой против действия раст­вора аммиака.

3.3 Получение молибденовой кислоты Н2МоО4 или молибдата кальция СаМоО4

Остатки (отвалы) от выщелачивания раствором NH3 огарков, полученных после обжига богатых молибденовых концентратов, могут содержать до 20 – 25% Мо в составе соединений, не разлагаемых раст­ворами аммиака, - СаМоО4, MoO2, MoS2. Молибден из остатков от выщелачивания извлекают одним из трех методов: 1) спеканием ос­татков (отвалов) с содой и последующим выщелачиванием спеков во­дой; 2) выщелачиванием растворами соды в автоклавах; 3) обработ­кой отвалов кислотами. В первых двух способах молибден переходит в раствор в составе Na2MoО4:

СаМоО4 + Na2CO3 = Na2MoO4 + СаСО3

2МоО2 + О2 + 2NaСО3 = 2Na2MoO4 + 2CO2

2MoS2 +6Na2CO3 + 9О2 = 2Na2MoO4 + 4Na2SO4 + 6 CO2

Из раствора Na2MoO4 молибден осаждается в составе молибдатов кальция или железа (после удаления избытка ионов СО частичной нейтрализацией кислотой):

NaMoO4 + СаС12 = СаМоО4 + 2NaCl

3Na2MoO4 + 2FeCl3 — Fe2O3 ∙ ЗMоО3 + 6NaCl

Получаемые молибдаты кальция и железа (III) используются в промышленности ферросплавов. Кроме того, молибдат железа может быть разложен раствором аммиака:

Fe2O3 ∙ ЗMоО3 + 6NH4OH = 3(NH4)3MoO4 + 2Fe (OH)3

Полученный аммиачный раствор после очистки перерабатывают на парамолибдат аммония. При кислотной обработке отвалов используется азотная или соляная кислота. Молибдаты разлагаются кислотами, выделяя молибденовую кислоту:

СаМоO4 + 2HNO3 = Н2МоО4 + Ca (NO3)2

MOS2 и МоО2, оставшиеся в отвалах в результате неполного окис­ления концентрата при обжиге, окисляются при выщелачивании азот­ной кислотой, также образуя молибденовую кислоту:

MоS2 + 14HNO3 = Н24 + 12NO2 + 2NO + 4H2O

При обработке отвалов на холоду соляной кислотой образующаяся молибденовая кислота переходит в раствор. Это удобно при переработке отвалов, содержащих значительное количество соединений вольфрама. Вольфрамат кальция соляной кислотой на холоду не разлагается. Таким образом можно в принципе частично разделять соединения воль­фрама и молибдена. Поэтому солянокислая обработка рациональна, если в отвалах от аммиачного выщелачивания есть соединения воль­фрама.

Режим и схема спекания отвалов с содой следующие. Смесь отвалов с содой спекают 6 – 9 частями при 700 – 750°С на поду пламенной печи. Спек выщелачивают водой. Пульпу фильтруют и промывают. Из фильтрата осаждают молибдаты железа или кальция (молибдат железа осаждает­ся при рН 3,5 – 5). В осадке получается смесь молибдата и гидроокиси железа. Осадок выщелачивают раствором аммиака. Полученный раст­вор молибдата аммония перерабатывают на парамолибдат аммония обычным путем. Хвосты после выщелачивания осадка молибдата же­леза содержат 1 – 1,5% МоО3 и являются отвальными. Выщелачивают отвалы растворами соды в автоклавах при 180 – 200°С, что соответствует давлению 12 – 15 атмосфер. Автоклавный процесс рационален при низком содержании MoS2 и МоО2 в отвале [20].

 

3.4 Возгонка из огарков МоО3

Возгонка и испарение из расплава МоО3 применяются для получения чистого окисла [20, 23]. Возгонка начинается заметно с 800°С, расплав кипит при 1150°С. Способы возгонки и испаре­ния МоО3 из расплава дают возможность получить чистый МоО3 по очень короткой схеме. Количество МоО3, испарившегося с поверх­ности расплава при 930°С за 1,5 ч (1,0 г/см2)10-4, за 4 ч (1,5 г/см2)10-4. Значительное влияние на возгонку МоО3 оказывают примеси. Это связано с образованием молибдатов, особенно Са и Mg, устойчивых при температуре испарения. Эти соединения растворяются в расплаве МоО3, понижая упругость его пара. Упругость пара молибдатов повышается с температурой, и перенос примеси увеличивается. Так, дав­ление пара РbМоО4 при 1016°С 0,08, при 1060°С 0,23 мм. рт. ст. В процес­се возгонки к порошку МоО3 добавляют кварц, облегчающий разгруз­ку невозогнанного остатка. В противном случае остаток МоО3 налипает на под и пропитывает его.

В промышленности при малом масштабе производства МоО3 при 1100 - 1200°С возгоняют в тигельных наклонных вращающихся электропечах, при большом масштабе – в карусельной электропечи с вращаю­щимся подом и силитовыми нагревателями. На поду находится слой кварцевого песка. Воздух в тигли вдувают через трубку на поверхность испарения, а возгон выносится током воздуха из тигля через приемный зонт и трубопровод в приемные устройства. В карусельных печах воз­дух продувают над поверхностью пода; газы выносятся через отверстия в своде печи в общий приемный коллектор, далее в кулеры и мешочные фильтры. В печи есть две зоны: зона питания с загрузочными бунке­рами и зона возгонки с отверстиями для вывода возгона и пара. За один оборот пода возгоняется около 60% МоО3, имеющегося в огарке. По­довый остаток поступает на химическую переработку растворением или на выплавку ферромолибдена. За сутки печь дает 3,75 т чистой МоО3. Чистота зависит от температуры, состава исходного огарка и может быть достаточно высокой. Повышение температуры снижает чистоту возгона, которая колеблется от 99,5 до 99,75%.

Исходные для возгонки огарки получаются обжигом богаты и
чистых концентратов и содержат 80 – 90% МоО3. Для этого в концентратах должны быть не менее 60% молибдена, ~5% SiO2 и сотые доли процента примесей металлов.


Информация о работе «Получение молибдена из отходов промышленности»
Раздел: Химия
Количество знаков с пробелами: 77848
Количество таблиц: 3
Количество изображений: 3

Похожие работы

Скачать
31727
0
3

... из отработанных катализаторов и химических остатков [16]. 3.3 Молибден из колошниковой пыли плавильных печей Этот процесс, разработанный X. Кастанья, предназначен для выделения молибдена в виде молибденовой кислоты из отходов, в частности, из отработанных катализаторов, содержащих носитель - у-оксид алюминия и молибден в виде оксида или сульфида. Процесс включает обработку отходов ...

Скачать
36871
18
2

... молибдена и др. Эти материалы могут быть использованы в качестве легирующие компоненты для выплавки легированных чугуну и стали. Результаты исследований [11] показали, что использование отработанных никелевых катализаторов позволяет получать заготовку шихты с содержанием никеля 11 % и ванадию 3 % при одношлаковом режиме плавки.   1.2 Особенности редкофазной обновительной плавки.   Выполненный ...

Скачать
86209
0
14

... отходам производства. В докладе «О состоянии окружающей природной среды Российской Федерации в 1997 году» Государственного комитета Российской Федерации по охране окружающей среды отмечается, что на начало 1997 г. на предприятиях различных отраслей промышленности накоплено 1431,7 млн. т токсичных отходов. За 1997 г. на промышленных предприятиях РФ образовалось 89,4 млн т токсичных отходов, из ...

Скачать
55619
11
1

... . Заражение радиоактивными веществами и происходило ранее при воздушных и подводных испытаниях атомных бомб, а сейчас может произойти — при авариях атомных подводных лодок. Усиливается загрязнение природной среды твердыми промышленно-бытовыми отходами. Это вышедшие из употребления упаковочные матери­алы, бытовые и промышленные приборы, машины, бумага, консервные банки и, бутылки, остатки пищи, ...

0 комментариев


Наверх