Министерство Образования Российской Федерации
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
«Редуцированные полукольца»
математического факультета
\Подпись\ ____________
Научный руководитель:
К.физ.-мат. наук
.
\Подпись\ ____________
Рецензент:
Д. физ.-мат. наук, профессор
.
\Подпись\ ____________
Допущен к защите в ГАК
Зав. кафедрой ___________________.
«___»________________
Декан факультета _______________.
«___»________________
Киров, 2003.
План.
1. Введение.
2. Основные понятия, леммы и предложения.
3. Доказательство основной теоремы.
1.Введение
Определение 1. Непустое множество S с бинарными операциями + и × называется полукольцом, если выполняются следующие аксиомы:
1. (S, +) - коммутативная полугруппа с нейтральным элементом 0;
2. (S, ×) - полугруппа с нейтральным элементом 1;
3. умножение дистрибутивно относительно сложения:
a(b + c) = ab + ac, (a + b)c = ac + bc
для любых a, b, c Î S;
4. 0a = 0 = a0 для любого aÎ S.
Итак, по принятому нами определению полукольцо отличается от ассоциативного кольца с единицей отсутствием операции вычитания и именно это вызывает основные трудности при работе с полукольцами.
В настоящей работе рассмотрен такой класс полуколец, как редуцированные полукольца.
Определение 2. Полукольцо S называется редуцированным, если для любых a, bÎS выполняется a = b, как только a+ b= ab + ba.
Целью данной работы является доказательство следующей теоремы.
Теорема . Для всякого редуцированного полукольца S равносильны следующие условия:
1. S слабо риккартово;
2. " a, bÎS (D(a)ÇD(b)=ÆÞ =Æ);
3. все идеалы Op, PÎSpec S, первичны(эквивалентно, вполне первичны, псевдопросты);
4. все идеалы OM, MÎ Max S, первичны (эквивалентно, вполне первичны, псевдопросты) и P Í M Þ Op=OM для " PÎ Spec S и MÎ Max S;
5. каждый первичный идеал полукольца S содержит единственный минимальный первичный идеал;
6. " a, bÎ S (ab = 0 Þ Ann a + Ann b = S);
Эта теорема обобщает факты, доказанные в классе колец ([1]). 2.Основные понятия, леммы и предложения Для доказательства нашей теоремы нам потребуется определить некоторые понятия и вывести несколько фактов.Определение 3. Полукольцо S называется симметрическим, если для любых элементов a, b, b¢, c Î S выполняется
abc = ab¢c Û acb = acb¢.
Определение 4. Элемент aÎS называется нильпотентным, если в последовательности a, a, a,…, a, … встретится нуль.
Предложение 1. Редуцированное полукольцо S является симметрическим полукольцом без нильпотентов.
Доказательство: Пусть ab = ab¢. Тогда
baba = bab¢a и b¢aba = b¢ab¢a,
откуда
baba + b¢ab¢a = bab¢a + b¢aba
или иначе
(ba)+ (b¢a)= bab¢a + b¢aba.
В силу редуцированности ba = b¢a, т.е.
ab = ab¢ Þ ba = b¢a. (1)
Аналогично доказывается ba = b¢a Þ ab = ab¢.
Пусть ab = ab¢. Тогда с помощью (1) ba = b¢a, откуда bac = b¢ac и acb = acb¢. Значит, имеем:
ab = ab¢ Þ acb = acb¢, ba = b¢a Þ bca = b¢ca. (2)
Пусть сейчас abc = abc¢. Тогда
abc = ab¢c Þ acbc = acb¢c Þ acbac = acb¢ac Þ acbacb = acb¢acb и
acbacb¢ = acb¢acb¢ Þ (acb)+ (acb¢)= acb¢acb + acbacb¢ Þ acb = acb¢.
Таким же образом доказывается другая импликация.
Пусть a+ b= ab + ba влечёт a = b. При b = 0 получаем a= 0 Þ a = 0. Если с= 0 для некоторого натурального n > 2, то c= 0 для k Î N с условием n £ 2. Получаем, что c= 0, и так далее. На некотором шаге получим c= 0, откуда с = 0. Предложение доказано.
Пример. Рассмотрим полукольцо S = {0, a, b, 1}, операции в котором заданы следующим образом:
+ | a b 1 |
a b 1 | a b 1 b b b 1 b 1 |
· | a b 1 |
a b 1 | a a a b b b a b 1 |
Пример этого полукольца показывает, что, во-первых, в определении симметричности полукольца импликации нужны в обе стороны, поскольку aa = ab, но aa ¹ ba. Во-вторых, S – полукольцо без нильпотентов, более того, без делителей нуля; однако симметрическим, в частности, редуцированным, оно не является. В этом проявляется отличие от колец, поскольку известно, что отсутствие нильпотентов в кольце влечёт кольцевую симметричность.
Определение 5. Собственный двусторонний идеал P полукольца S называется первичным, если AB Í P влечёт A Í P или B Í P для любых идеалов A и B. Первичный идеал коммутативного полукольца называется простым.
Определение 6. Правый идеал P полукольца S называется псевдопростым, если ab = 0 влечёт a Î P или b Î P для "a, b Î S.
Предложение 2. Идеал P полукольца S первичен тогда и только тогда, когда для любых элементов a, b Î S \ P найдётся элемент s Î S такой, что asb Ï P. Если S - коммутативное полукольцо, то идеал P прост тогда и только тогда, когда a, b Ï P влечёт ab Ï P.
Доказательство: Пусть P первичен и элементы a, b Ï P. Тогда главные идеалы (a) и (b) не лежат в P, как и их произведение. Значит, некоторый элемент t Î aSb не принадлежит P, поскольку t = для некоторых u,v,wÎ S, то хотя бы для одного i Î {1,…,k} a vb Ï P, ибо в противном случае каждое слагаемое uavbw лежит в P, и следовательно, t Î P.
Обратно. Пусть произведение идеалов A и B лежит в P, но A P. Тогда найдётся a Î A \ P. Предположим, что B P. Получим, что некоторый элемент b Î B \ P и по условию asb Ï P для подходящего s ÎS. Но тогда и AB P, и следовательно, P - первичный идеал.
Утверждение для коммутативного случая очевидно.
Определение 7. Подмножество T полукольца называется m-системой, если 0 ÏT, 1 ÎT и для любых a, b Î T найдётся такой s ÎS, что asb Î T.
Пример. Рассмотрим множество T = {a,a, a, … , a}, где n Î N и a ¹ 0. Оно является подмножеством полукольца Rнеотрицательных действительных чисел с обычными операциями сложения и умножения. 0 Ï T, 1Î T и для "a,aÎ T $с = 1ÎS : aсa= aÎ T. Таким образом, T является m-системой.
Легко увидеть, что если P – первичный идеал, то S \ P является m-системой. И хотя дополнение до m-системы не обязано быть первичным идеалом, следующее утверждение показывает, что между ними существует глубокая связь.
Предложение 3. Пусть T - m-система, а J - произвольный идеал полукольца S, не пересекающийся с T. Тогда любой максимальный идеал среди содержащих J и не пересекающихся с T первичен.
Доказательство: Пусть P Ê J, P Ç T = Æ и P - максимальный в семействе идеалов, удовлетворяющих этим условиям. Допустим, что aSb Í P для некоторых a, b Ï P. Идеалы P + SaS и P + SbS строго содержат идеал P, и значит, пересекаются с T. Пусть m Î (P + SaS) Ç T, r Î (P + SbS) Ç T и msr Î T для некоторого sÎS. Но, с другой стороны,
msr Î (P + SaS) × (P + SbS) Í P +SaSbS Í P.
Получили противоречие, что P пересекается с T. Значит, предположение, что aSb Î P неверно, и P - первичный идеал. Предложение доказано.
Определение 8. Собственный идеал M полукольца S называется максимальным идеалом, если M Í A влечёт M = A или A = S для каждого идеала A.
Предложение 4. Максимальный идеал полукольца первичен.
Доказательство: Рассмотрим нулевой идеал J и не пересекающуюся с ним m-систему T = {1}. Любой максимальный идеал M полукольца содержит J и не пересекается с T, значит, по предложению 3 он будет первичным.
Определение 9. Для любого a Î S множество
Ann aS = {t Î S: ("s Î S) ast=0} называется аннулятором элемента a.
Ann aS является двусторонним идеалом полукольца S.
Ann a ={s Î S: as = 0} - правый идеал и Ann aS Í Ann a.
Определение 10. Для любого идеала P множество Op = {s Î S: ($tÏP) sSt = 0} = {s Î S: Ann sS P} называется O-компонентой идеала P.
Лемма 1. Op является идеалом для любого первичного идеала P.
Доказательство: Пусть a, b Î Op. Тогда aSt = 0 и bSu = 0 для некоторых t, u Ï P. В силу первичности P tsu Ï P для подходящего s Î S. Для любого v Î S
(a + b)vtsu = (avt)su + b(vts)u = 0.
Далее, (as)vt = a(sv)t = 0, (sa)vt = s(avt) = s0 = 0, поэтому a + b, sa, as Î Op, и Op - идеал.
Лемма 2. Пусть P Í M - первичные идеалы полукольца.
Тогда OM Í Op Í P.
Доказательство: Пусть a Î OM, тогда aSt = 0 для некоторого t Ï M. Поскольку t Ï P, то a Î Op, и значит, OM Í Op. Для любого s Î S 0 = ast Î P. Поскольку P первичен, то a Î P или t Î P, отсюда a Î P, и следовательно, Op Í P.
Лемма 3. Для произвольных первичных идеалов P и P¢ симметрического полукольца S верна импликация:
P Ç P¢ не содержит первичных идеалов Þ Op P¢.
Доказательство: Предположим, что Op Í P¢. Полагая A = S \ P и B = S \ P¢, рассмотрим множество AB всевозможных конечных произведений элементов из A È B. Покажем, что AB Ç Op = Æ. В самом деле, если s Î AB Ç Op, то sb = 0 для некоторого b Î A, т.е. {0} Î AB. Поскольку s является произведением элементов из A È B, то в силу первичности идеалов P и P¢ и свойства симметрических полуколец uv = 0 для подходящих u Î B, v Î A. Откуда u Î Op P¢ - противоречие.
Таким образом, AB является m-системой, и значит, существует первичный идеал Q, не пересекающийся с AB и содержащий Op. А так как A È B Í AB, то P Ç P¢ Ê Q. Получили противоречие с условием, значит наше предположение неверно, и Op P¢.
Следствие 1. Для произвольных первичных идеалов P и P¢ в симметрическом полукольце, если Op Í P¢ , то пересечение P и P¢ содержит хотя бы один первичный идеал.
Определим множество (a, b) = {s Î S: "xÎS (axs = bxs)} - идеал полукольца S для "a, b Î S.Очевидно, (a, 0) = Ann aS.
Для произвольного идеала A обозначим - пересечение первичных идеалов полукольца S, содержащие идеал A.
Определение 11. Полукольцо S называется строго полупервичным, если для любых элементов a, b Î S выполняется
= (a, b).
Определение 12. Пересечение rad S всевозможных первичных идеалов в S называется первичным радикалом полукольца S.
Определение 13. Полукольцо называется полупервичным, если его первичный радикал равен нулю.
Предложение 5. Полукольцо S полупервично тогда и только тогда, когда = Ann aS для всех a Î S.
Доказательство: При a = 1 rad S = = Ann S = 0, т.е. S - полупервично.
Пусть S - полупервичное полукольцо и b Î. Для каждого первичного идеала P, либо P содержит Ann aS, либо Ann aS не содержится в P. В первом случае b Î P, во втором случае a Î Op Í P. Тогда aSb rad S = 0, откуда b Î Ann aS. Следовательно, Í Ann aS. Другое включение справедливо всегда.
Следствие 2. Строго полупервичное полукольцо является полупервичным.
Предложение 6. Всякое редуцированное полукольцо S строго полупервично.
Доказательство: Пусть c Ï(a, b) для a, b Î S. Тогда ac ¹ bc и из редуцированности S вытекает, что acac + bcbc ¹ acbc + bcac. Элементы cac и cbc отличны друг от друга, и значит, ac¹ bc в силу симметричности редуцированного полукольца. Аналогично ac¹ bc, и следовательно, ac¹ bc. По индукции ac ¹ bc. Значит, T = {1, c, c,…} - m-система, не пересекающаяся с (a, b), и поэтому найдётся первичный идеал P, содержащий (a, b), при этом c Î S \ P. Значит, c Ï, откуда Í (a, b). Другое включение справедливо всегда.
Получили = (a, b) Þ по определению 12 S - строго полупервично, что и требовалось доказать.
Обозначим через Spec S множество всех первичных идеалов полукольца S. Для любого идеала A полукольца S положим
D(A) = {P Î Spec S: A P}.
Множество D({0}) = {P Î Spec S: {0}P} = Æ, а Spec S = D(S).
D(A) Ç D(B) = { P Î Spec S: A P Ù B P} = { P Î Spec S : AB P} = D(AB).
Spec S является топологическим пространством с семейством открытых множеств вида D(A).
Лемма 4. Для любого идеала A полупервичного полукольца S
= {P Î Spec S: Ann A Í P}.
Доказательство: Обозначим через Y правую часть доказываемого равенства. Если P Î D(A), т.е. A P, то Ann A Í P, т.е. P Î Y. Откуда Í Y, ибо Y замкнуто.
Обратно, пусть P Ï. Тогда P лежит в некоторой окрестности D(B), где B - некоторый идеал в S, не пересекающийся с.
D(A) Ç D(B) = Æ, тогда AB Í rad S = 0, т.е. B Í Ann A.
Тогда P не содержит Ann A , иначе P содержал бы B . Следовательно, P Ï Y . Получили Y Í .
Лемма 5. Пусть P - первичный идеал редуцированного полукольца S. Тогда P = Op Û P - минимальный первичный идеал.
Доказательство: Пусть P = Op , P ¢Î Spec S и P ¢ Í P. Тогда Op Í OP¢ Í P ¢. Поэтому P ¢= P, и P минимален.
Обратно, пусть дан минимальный первичный идеал P редуцированного полукольца S. Предположим, что существует a ÎP \ Op. Степени элемента a образуют m-систему (0 Ï{a}, 1Î{a} и для "a,aÎ{ a} $с = 1ÎS : aсa= aÎ{ a}),не пересекающуюся с Op. Действительно, если aÎ Op , n Î N, то ab = 0 для некоторого b ÎS \ P. Но тогда (ab)= 0, так как редуцированное полукольцо симметрическое без нильпотентов, и значит ab = 0, то есть a Î Op ;противоречие. Из предложения 3 видно, что найдётся идеал P ¢ Op, не содержащий a, который будет первичным. Из следствия 1 вытекает, что в S существует первичный идеал, лежащий в P Ç P ¢,что противоречит минимальности P. Значит, P Í Op. Также Op Í P (Лемма 2). Тогда P = Op.
Лемма 6. Любой первичный правый идеал симметрического полукольца псевдопрост.
Доказательство: В самом деле, если a, b Î S \ P, то asb Ï P для подходящего s Î S, откуда asb ¹ 0 и ab ¹ 0.
Определение 14. S – слабо риккартово Û "a Î S "b Î Ann aS
Ann aS + Ann b = S
Пример. Обозначим через N – полукольцо всех неотрицательных целых чисел с обычными операциями сложения и умножения. Возьмём a = 0Î N. Тогда Ann aS = N. В результате получим, что Ann aS + Ann b = N. Теперь возьмём a Î N \ {0}. Тогда Ann aS = {0}, а Ann b = N. В результате получим, что Ann aS + Ann b = {0} + N = N . Таким образом, N – слабо риккартово полукольцо. Аналогично, любое полукольцо без делителей нуля будет являться слабо риккартовым.
3. Доказательство основной теоремы.
Теорема . Для всякого редуцированного полукольца S равносильны следующие условия:
1. S слабо риккартово;
2. " a, bÎS (D(a)ÇD(b)=ÆÞ =Æ);
3. все идеалы Op, PÎSpec S, первичны(эквивалентно, вполне первичны, псевдопросты);
4. все идеалы OM, MÎ Max S, первичны (эквивалентно, вполне первичны, псевдопросты) и P Í M Þ Op=OM для " PÎ Spec S и MÎ Max S;
... . Можно указать порядковый номер и имя определившего. Чтобы предотвратить повреждение насекомыми, коллекции могут быть помещены в домашний морозильник на нескольких дней. 2.4. Выращивание культур. Метод влажных камер. Плодовые тела миксомицетов могут быть собраны в течение лета и начала осени в умеренных районах мира. Однако, наблюдение и сбор коллекций миксомицетов не ограничены этими ...
... в том, что старую схему смешения вертикально соотносимых форм правления — монархии, аристократии и демократии — он дополнил последовательным проведением идеи функциональной специализации власти. Эта идея была с блеском использована в Новом Свете. Новый Свет: хорошо усвоенное старое. Британский политический опыт и его теоретическое осмысление послужили основой для становления республиканизма в ...
... Хлебозавод 571844,591 1,00/6000 95,31 Котельная 10848966,017 -/- 4694,67 Сумма 5354,59 м3/ч Удельный часовой расход газа определяется по формуле (21) 5. Система и схема газоснабжения Наличие в районе города потребителей двух параметров определяет необходимость выбора двухступенчатой системы газоснабжения, она экономична, надёжна, проста в эксплуатации и наиболее ...
... 6, 7), отходящих от лопатки (частично и от коракоида). Вся свободная лопасть плавника состоит из членистых кожных лучей1 (lepidotrichia; рис. 6, 8). Особенность скелета грудных плавников костистых рыб, по сравнению с хрящевыми, заключается в редукции базалий. Подвижность грудных плавников увеличивается потому, что мышцы прикрепляются к расширенным основаниям кожных лучей, подвижно сочленяющихся с ...
0 комментариев