Городская открытая научно – практическая конференция

 

 

 

 

 

Тема: Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями

 

 

 

Автор:

 

Научный руководитель:

 

 

 

 

 

 

 

 

 

 

 

 

2007 г.

Содержание

 

1. Введение

2. Решение уравнений с параметрами

3. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями

4. Заключение

5. Используемая литература

Введение

Актуальность данной темы определяется необходимостью уметь решать такие уравнения с параметрами при сдачи Единого Государственного экзамена и на вступительных экзаменах в высшие учебные заведения.

Цель данной работы рассказать о решении уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями.

Для достижения поставленной цели необходимо решить следующие задачи:

1)        дать определения понятиям уравнение с параметрами;

2)        показать принцип решения данных уравнений на общих случаях;

3)        показать решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями.

Для выполнения поставленной цели были использованы следующие методы: использование литературы разного типа, работа в группах на уроках алгебры и занятиях элективного курса по математике, участие проектной группы в городской конференции по данной теме в 2006 году.

Объектом исследовательской работы было решение уравнений с параметрами, связанных со свойствами выше представленных функций.

Структура данной работы включает в себя теорию, практическую часть, заключение, библиографический список.


Решение уравнений с параметрами

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры у школьников, но их решение вызывает у них значительные затруднения. Это связано с тем, что каждое уравнение с параметрами представляет собой целый класс обычных уравнений, для каждого из которых должно быть получено решение. Такие задачи предлагаются на едином государственном экзамене и на вступительных экзаменах в вузы.

Большинство пособий адресовано абитуриентам, однако начинать знакомиться с подобными задачами нужно намного раньше – параллельно с соответствующими разделами школьной программы по математике.

Если в уравнении некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение параметрическим.

Естественно, такой небольшой класс задач многим не позволяет усвоить главное: параметр, будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во-первых, предполагаемая известность позволяет «общаться» с параметром как с числом, а во-вторых, - степень свободы общения ограничивается его неизвестностью. Так, деление на выражение, содержащее параметр, извлечение корня четной степени из подобных выражений требуют предварительных исследований. Как правило, результаты этих исследований влияют и на решение, и на ответ.

Основное, что нужно усвоить при первом знакомстве с параметром, - это необходимость осторожного, даже, если хотите, деликатного обращения с фиксированным, но неизвестным числом. Этому, по нашему мнению, во многом будут способствовать наши примеры.

Необходимость аккуратного обращения с параметром хорошо видна на тех примерах, где замена параметра числом делает задачу банальной. К таким задачам, например, относятся: сравнить два числа, решить линейное или квадратное уравнение, неравенство и т.д.

Обычно в уравнение буквами обозначают неизвестные.

Решить уравнение - значит:

найти множество значений неизвестных, удовлетворяющих этому уравнению. Иногда уравнения, кроме букв, обозначающих неизвестное(X, Y,Z), содержат другие буквы, называемые параметрами(a, b, c). Тогда мы имеем дело не с одним, а с бесконечным множеством уравнений.

При одних значениях параметров уравнение не имеет корней, при других – имеет только один корень, при третьих – два корня.

При решении таких уравнений надо:

1) найти множество всех доступных значений параметров;

2) перенести все члены, содержащие неизвестное, в левую часть уравнения, а все члены, не содержащие неизвестного в правую;

3) привести подобные слагаемые;

4) решать уравнение ax = b.

Возможно три случая.

1. а 0, b – любое действительное число. Уравнение имеет единственное решение х = .

2. а = 0, b = 0. Уравнение принимает вид: 0х = 0, решениями являются все хR.


Информация о работе «Решение уравнений с параметрами»
Раздел: Математика
Количество знаков с пробелами: 12228
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
69553
1
0

... точек координатной оси. Занятие № 4. Тема: Аналитический метод. Метод «ветвлений». Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр. Литература для учителя: см. [1] , [5], [6], [7], [14] Литература для ученика: см. [3] Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению ...

Скачать
13855
1
0

... b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным. Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z. ...

Скачать
14032
1
3

... c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным. Переменные a, b, c, …, k , которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k , l, m, n а неизвестные – буквами x, y,z. ...

Скачать
24636
0
0

... знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, т. е. числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы исключить посторонние корни, требуется находить значение параметра, обращающее общий знаменатель в нуль, т. е. решать соответствующие ...

0 комментариев


Наверх