решений не имеет.
Сделаем одно замечание. Существенным этапом решения уравнений с параметрами является запись ответа. Особенно это относится к тем примерам, где решение как бы «ветвится» в зависимости от значений параметра. В подобных случаях составление ответа – это сбор ранее полученных результатов. И здесь очень важно не забыть отразить в ответе все этапы решения.
В только что разобранном примере запись ответа практически повторяет решение. Тем не менее, я считаю целесообразным привести ответ.
Ответ:
х = при а 0, b – любое действительное число;
х – любое число при а = 0, b = 0;
решений нет при а = 0, b ≠ 0.
Решение уравнений с параметрами, связанных со свойствами показательной, тригонометрической и логарифмической функциями
1. Найдем значения параметра n, при которых уравнение 15·10 х – 20 = n – n · 10х + 1 не имеет корней?
Решение: преобразуем заданное уравнение: 15·10 х – 20 = n – n · 10х + 1; 15·10 х + n· 10х + 1 = n + 20; 10 х ·(15 + 10n) = n + 20; 10 х = .
Уравнение не будет иметь решений при ≤ 0, поскольку 10 х всегда положительно.
Решая указанное неравенство методом интервалов, имеем: ≤ 0; (n + 20)·(15 + 10n) ≤ 0; - 20 ≤ n ≤ - 1,5.
Ответ: .
2. Найдем все значения параметра а, при которых уравнение lg2 (1 + х2) + (3а – 2)· lg(1 + х2) + а2 = 0 не имеет решений.
Решение: обозначим lg(1 + х2) = z, z > 0, тогда исходное уравнение примет вид: z2 + (3а – 2) · z + а2 = 0. Это уравнение – квадратное с дискриминантом, равным (3а – 2)2 – 4а2 = 5а2 – 12а + 4. При дискриминанте меньше 0, то есть при 5а2 – 12а + 4 < 0 выполняется при 0,4 < а <2.
Ответ: (0,4; 2).
3. Найдем наибольшее целое значение параметра а, при котором уравнение cos2x + asinx = 2a – 7 имеет решение.
Решение: преобразуем заданное уравнение:
cos2x + asinx = 2a – 7; 1 – 2sin2х – asinx = 2a – 7; sin2х - asinx + a – 4 = 0;
(sinх – 2) · = 0.
Решение уравнения (sinх – 2) · = 0 дает:
(sinх – 2) = 0; х принадлежит пустому множеству.
sinх - = 0; х = (-1)n arcsin + πn, n Z при ≤ 1. Неравенство ≤ 1 имеет решение 2 ≤ а ≤ 6, откуда следует, что наибольшее целое значение параметра а равно 6.
Ответ: 6.
4. Указать наибольшее целое значение параметра а, при котором корни уравнения 4х2 - 2х + а = 0 принадлежит интервалу (- 1; 1).
Решение: корни заданного уравнения равны: х1 = (1+ )
х2 =, при этом а ≤ .
По условию -1 < (1+ ) < 1 < < 3,
- 1 < < 1 > > - 3.
Решением, удовлетворяющим указанным двойным неравенствам, будет решение двойного неравенства: - 3 < < 3.
Неравенство - 3 < выполняется при всех а ≤ , неравенство < 3 – при - 2 < а ≤ . Таким образом, допустимые значения параметра а лежат в интервале (-2; .
Наибольшее целое значение параметра а из этого интервала, которое одновременно принадлежит и интервалу (-1; 1), равно 0.
Ответ: 0.
... точек координатной оси. Занятие № 4. Тема: Аналитический метод. Метод «ветвлений». Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр. Литература для учителя: см. [1] , [5], [6], [7], [14] Литература для ученика: см. [3] Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению ...
... b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным. Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z. ...
... c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным. Переменные a, b, c, …, k , которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k , l, m, n а неизвестные – буквами x, y,z. ...
... знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, т. е. числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы исключить посторонние корни, требуется находить значение параметра, обращающее общий знаменатель в нуль, т. е. решать соответствующие ...
0 комментариев