3. а = 0, b 0. Уравнение 0х = b

решений не имеет.

Сделаем одно замечание. Существенным этапом решения уравнений с параметрами является запись ответа. Особенно это относится к тем примерам, где решение как бы «ветвится» в зависимости от значений параметра. В подобных случаях составление ответа – это сбор ранее полученных результатов. И здесь очень важно не забыть отразить в ответе все этапы решения.

В только что разобранном примере запись ответа практически повторяет решение. Тем не менее, я считаю целесообразным привести ответ.

Ответ:

х =  при а  0, b – любое действительное число;

х – любое число при а = 0, b = 0;

решений нет при а = 0, b ≠ 0.

Решение уравнений с параметрами, связанных со свойствами показательной, тригонометрической и логарифмической функциями

1. Найдем значения параметра n, при которых уравнение 15·10 х – 20 = n – n · 10х + 1 не имеет корней?

Решение: преобразуем заданное уравнение: 15·10 х – 20 = n – n · 10х + 1; 15·10 х + n· 10х + 1 = n + 20; 10 х ·(15 + 10n) = n + 20; 10 х = .

Уравнение не будет иметь решений при  ≤ 0, поскольку 10 х всегда положительно.

Решая указанное неравенство методом интервалов, имеем:  ≤ 0; (n + 20)·(15 + 10n) ≤ 0; - 20 ≤ n ≤ - 1,5.

Ответ: .

2. Найдем все значения параметра а, при которых уравнение lg2 (1 + х2) + (3а – 2)· lg(1 + х2) + а2 = 0 не имеет решений.

Решение: обозначим lg(1 + х2) = z, z > 0, тогда исходное уравнение примет вид: z2 + (3а – 2) · z + а2 = 0. Это уравнение – квадратное с дискриминантом, равным (3а – 2)2 – 4а2 = 5а2 – 12а + 4. При дискриминанте меньше 0, то есть при 5а2 – 12а + 4 < 0 выполняется при 0,4 < а <2.

Ответ: (0,4; 2).

3. Найдем наибольшее целое значение параметра а, при котором уравнение cos2x + asinx = 2a – 7 имеет решение.

Решение: преобразуем заданное уравнение:

cos2x + asinx = 2a – 7; 1 – 2sin2х – asinx = 2a – 7; sin2х - asinx + a – 4 = 0;

(sinх – 2) ·  = 0.

Решение уравнения (sinх – 2) ·  = 0 дает:

(sinх – 2) = 0; х принадлежит пустому множеству.

sinх -  = 0; х = (-1)n arcsin  + πn, n  Z при  ≤ 1. Неравенство ≤ 1 имеет решение 2 ≤ а ≤ 6, откуда следует, что наибольшее целое значение параметра а равно 6.

Ответ: 6.

4. Указать наибольшее целое значение параметра а, при котором корни уравнения 4х2 - 2х + а = 0 принадлежит интервалу (- 1; 1).

Решение: корни заданного уравнения равны: х1 = (1+ )

х2 =, при этом а ≤ .

По условию -1 < (1+ ) < 1 < < 3,

 - 1 < < 1  >  > - 3.

Решением, удовлетворяющим указанным двойным неравенствам, будет решение двойного неравенства: - 3 <  < 3.

Неравенство - 3 <  выполняется при всех а ≤ , неравенство < 3 – при - 2 < а ≤ . Таким образом, допустимые значения параметра а лежат в интервале (-2; .

Наибольшее целое значение параметра а из этого интервала, которое одновременно принадлежит и интервалу (-1; 1), равно 0.

Ответ: 0.


Информация о работе «Решение уравнений с параметрами»
Раздел: Математика
Количество знаков с пробелами: 12228
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
69553
1
0

... точек координатной оси. Занятие № 4. Тема: Аналитический метод. Метод «ветвлений». Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр. Литература для учителя: см. [1] , [5], [6], [7], [14] Литература для ученика: см. [3] Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению ...

Скачать
13855
1
0

... b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным. Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z. ...

Скачать
14032
1
3

... c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным. Переменные a, b, c, …, k , которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k , l, m, n а неизвестные – буквами x, y,z. ...

Скачать
24636
0
0

... знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, т. е. числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы исключить посторонние корни, требуется находить значение параметра, обращающее общий знаменатель в нуль, т. е. решать соответствующие ...

0 комментариев


Наверх