3. Состав ряда чисел группы D ( Таблица №1)

а) простые числа

b) произведения D х F:

( 6a – 1 ) х ( 6b + 1 ) = 36ab + 6a – 6b – 1 = 6 (6ab + a – b) – 1 = 6d - 1

Отсюда следует, что все D =/ 6 (6ab + a – b) – 1

( где a и b любое натуральное число) – это простые числа.

Все d =/ 6ab + a – b (где a и b любое натуральное число) – это периоды простых чисел.

4. Состав ряда чисел группы F ( Таблица №1)

а) простые числа

b) произведения D х D

( 6a – 1 ) х ( 6b – 1 ) = 36ab – 6a – 6b + 1 = 6 (6ab – a – b) + 1

с) произведения F х F:

( 6a + 1 ) х ( 6b + 1 ) = 36ab + 6a + 6b + 1 = 6 (6ab + a + b) + 1

 Значит, простые числа это:

F =/ 6 (6ab – a – b) + 1

F =/ 6 (6ab + a + b) + 1( где a и b любое натуральное число)

Периоды простых чисел

f =/ 6ab - a – b

f =/ 6ab + a + b (где a и b любое натуральное число)

.

II ТЕСТЫ ПРОСТОТЫ

 

1. РЕШЕТО

 Запишем любой из числовых рядов групп D или F до нужного нам числа. Знак ( - ) опустим без ущерба для нашей задачи.

53 47 41 35 29 23 17 11 5 1 7 13 19 25 31 37 43 49 55

 

Центр этого ряда - число 1. Оно не является простым. Обозначим его [х]. Первое после 1

число 5 – простое. От 5 влево и вправо отсчитываем каждое 5-ое число и вычеркиваем.

53 47 41 х 29 23 17 11 5 х 7 13 19 х 31 37 43 49 х

Следующее по величине невычеркнутое число 7 – простое. От 7 влево и вправо отсчитываем каждое 7-е число и вычеркиваем.

53 47 41 х 29 23 17 11 5 х 7 13 19 х 31 37 43 х х

Мы получили ряд типичных простых чисел в интервале от 5 до 55. Достаточным является вычеркиваемое число [корень квадратный из наибольшего квадрата в ряду].

2. ПЕСОЧНЫЕ ЧАСЫ

Таблица № 1 Определение простоты чисел «Песочные часы»

____________________________________________________________________

!  ! ! ! ! !  ! _________!x!

!  ! ! ! !  ! _________!_!_!_!_!_!x!_!

!  !  !  ! !_________ !_!_!_!_!_!_!_!_!_!_!x!_!_!

!  ! ! ! _________!_!_!_!_!_!_!x!_!x!_!_!_!_!_!_!x!_!_!_!

!  ! !_________ !_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!

! !_________ !_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!

! ____!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!

!_!_!_!_!_!_!x!_!_!_!_!x!x!_!_!_!_!_!_!_!_!_!_!_!_!_!x!x!_!_!_!_!x!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!x!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!x!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!x!_!x!_!_!_!_!_!_!_!_!_!x!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!x!_!_!_!_!_!_!_!x!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!0!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!x!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!x!_!_!_!x!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!x!_!_!x!_!x!_!_!x!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!

!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_! ! !

!_!_!_!_!x!_!_!_!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!x!_! ! ! !

!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_! ! ! ! !

!_!_!x!_!_!_!_!_!_!_!_!_!x!_!_! !  ! ! ! !

!_!x!_!_!_!_!_!_!_! ! ! ! ! ! !

!x!_!_!_________ !_________ !_________ !_________ !_________ !_________ !_!


1 Разрежем Таблицу № 1 на вертикальные колонки шириной 6 клеток.

2. Отрежем от каждой колонки белую неразлинованную часть.

3 Совместим колонки, наложив друг на друга. Если первая колонка имеет ширину меньше, чем 6 клеток, то она сдвигается вправо, а последняя – влево до боковой линии.

4     Допустим, что лист прозрачный. Тогда пустые клетки в совмещенной колонке

соответствуют простым числам ( Таблицы № 2А и2В ). Формулы вверху Таблицы № 2В для чисел f периодов от 0 и выше, формулы внизу – для чисел d периодов от 0 и ниже. (Периоды f и d - №№ строчек ).

Таблица № 2А Таблица № 2В  Периоды  

 _____________________________________________

 !_36f+25 !_36f+19!_36f+13 !_36f+7_!_36f+1_!_36f-5_! F

___________ ______________________________________________

!х!х!х!_!_!х! !_______!_______!_______!__547__!__541__!_______! 15

!х!_!х!х!х!_! !_______!__ 523_ !_______!_______!_______!__499__! 14

!х!_!х!х!х!_! !_______!__487__!_______!_______!_______!__463__! 13

!_!х!х!_!_!х! !__457__!_______!_______!__439__!__433__!_______! 12

!_!х!_!х!_!х! !__421__!_______!__409__!_______!__397__!_______! 11

!х!_!_!_!х!х! !_______!__379__!__373__!__367__!_______!_______! 10

!_!х!_!_!х!х! !__349__!_______!__337__!__331__!_______!_______!  9

!_!_!х!х!х!_! !__313__!__307__!_______!_______!_______!__283__!  8

!_!_!х!х!х!х! !__277__!__271__!_______!_______!_______!_______!  7

!_!х!_!_!х!_! !__241__!_______!__229__!__223__!_______!__211__!  6

!х!_!_!х!_!х! !_______!__199__!__193__!_______!__181__!_______!  5

!х!_!_!_!х!_! !_______!__163__!__157__!__151__!_______!__139__!  4

!х!_!х!х!_!_! !_______!__127__!_______!_______!__109__!__103__!  3

!_!х!х!_!_!_! !___97__!_______!_______!___79__!___73__!___67__!  2

!_!х!х!_!_!_! !___61__!_______!_______!___43__!___37__!___31__!  1

!х!_!_!_!0!_! !_______!___19__!___13__!____7__!_______!____5__!  0

!_!_!_!_!х!_! !___11__!___17__!____23_!___29__!_______!___41__!  1

!_!_!_!х!_!х! !___47__!___53__!___59__!_______!___71__!_______!  2

!_!_!х!_!_!_! !___83__!___89__!_______!__101__!__107__!__113__!  3

!х!х!_!_!х!_! !_______!_______!__131__!__137__!_______!__149__!  4

!х!х!_!_!_!х! !_______!_______!___167_!__173__!__179__!_______!  5

!_!_!х!х!х!х! !__191__!__197__!_______!_______!_______!_______!  6

!_!_!_!х!_!_! !__227__!__233__!__239__!_______!__251__!__257__!  7

!_!_!х!_!х!_! !__263__!__269__!_______!__281__!_______!__293__!  8

!х!х!_!_!х!х! !_______!_______!__311__!__317__!_______!_______!  9

!х!х!_!_!_!х! !_______!_______!__347__!__353__!__359__!_______! 10

!х!х!_!_!х!_! !_______!_______!__383__!__389__!_______!__401__! 11

!х!х!_!х!_!х! !_______!_______!__419__!_______!__443__!_______! 12

!_!_!х!_!_!х! !__443__!__449__!_______!__461__!__467__!_______! 13

!_!х!_!х!_!_! !__479__!_______!__491__!_______!__503__!__509__! 14

!х!_!х!х!х!х! !_______!__521__!_______!_______!_______!_______! 15

!х!_!_!_!х!х! !_______!__557__!__563__!__569__!_______!_______! 16

!_!_!_!х!х!_! !__587__!__593__!__599__!_______!_______!__617 _!  17

_______________________________________________

!36d -25 _!36d-19_!36d-13_!_36d-7_ !_36d-1_ !_36d+5_!  D

Построение Таблицы № 1

1. Числовая ось. ( Таблица № 3А)

Числовая ось - это два ряда натуральных чисел, которые идут вверх и вниз от 0 в центре таблицы. Числа на оси - номера периодов.

2. Периоды чисел. ( Таблица № 3А)

Период чисел – это одна строчка (6 клеток) в колонке. Вверх от 0 идут №№ периодов f чисел вида (6а + 1), вниз от 0 идут №№ периодов d чисел вида (6а - 1).

3. Числовые узлы. ( Таблица № 3В)

Числовые узлы - это числа d на оси, равные квадратам чисел (1 4 9 16 ... n ^ 2).

4. Числовые цепочки . ( Таблицы № 3В и №3С)

Числовые цепочки – парные. Они симметричны относительно оси. Каждая клетка в цепочке сдвинута относительно предыдущей на 1 клетку в сторону от числовой оси, на n клеток вверх или вниз (похоже на «ход конем» в шахматах.)

а) Числовые цепочки внизу от 0 исходят из числовых узлов d. Клетки в них сдвинуты на 1 в стороны от числовой оси и на n вниз (Таблица № 3В). Параметры построения цепочек вниз от 0 приведены в Таблице № 4А

Таблица № 3

А. Числовая ось. В. Числовые узлы d = n^2 C. Числовые

Периоды чисел и числовые цепочки d’  цепочки f’

_______f___ ________ ________ _______________

 !_!_!_!_!4!_! !_!_!х!_!_! !_!_!х!_!_! !х!_!_!_!3!_!_!_!х!

!_!_!_!_!3!_! !_!х!2!х!_! !_!_!5!_!_! !_!х!_!_!2!_!_!х!_!

!_!_!_!_!2!_! !х!_!3!_!х! !_!х!6!х!_! !_!_!х!_!1!_!х!_!_!

!_!_!_!_!1!_!  !_!_!7!_!_! !_!_!_!_!0!_!_!_!_!

!_!_!_!_!0!_! d = 1^2 !х!_!8!_!х!

!_!_!_!_!1!_! f = 1^2

!_!_!_!_!2!_! d = 2^2  

!_!_!_!_!4!_!  

 d

b) Цепочки вверх от 0 начинаются на расстоянии 2n клеток по обе стороны от f = n^2 (клетка f при этом отсчете выполняет роль 0) и сдвинуты на 1 клетку в стороны от оси и на n клеток вверх (Таблица № 3С)

Параметры построения цепочек от 0 и выше приведены в Таблице № 4В

Таблица № 4А.Параметры Таблица № 4В. Параметры

цепочек чисел вида (6а – 1) цепочек чисел вида (6а + 1)

 (вниз от 0)  (вверх от 0)

___________________________ ________________________________________

! Числовые ! Колич.! Колич. ! ! Число  ! Количество ! Колич, ! Колич. !

! узлы ! клеток !клеток в ! ! на оси ! клеток от числа! клеток ! клеток в !

! ! вниз ! сторону ! ! ! на оси до ! вниз ! сторону !

! ! ! ! ! ! начала цепочки!  ! !

!--------------!-----------!-----------! !-----------!-------------------- !-----------!-------------!

! 1 ^ 2= 1 !  1  ! 1 ! ! 1 ^ 2= !!  1 х 2 ! 1 ! 1  !

!  2 ^ 2 = 4 ! 2  !  1 ! ! 2 ^2 = 4 ! 2 х 2 ! 2 ! 1  !

!  3 ^ 2 = 9 ! 3  !  1 ! ! 3 ^ 2= 9 ! 3 х 2 ! 3 ! 1  !

!  n ^ 2 ! n !  1 ! ! n ^ 2  !  2n  !  n  ! 1  !

!--------------!----------!----------- ! !-----------!---------------------!-----------!------------ !

Построим числовые цепочки до нужного нам числа. Все непомеченные знаком {x} клетки соответствуют простым числам. Следует предусмотреть, что запись цифр на числовой оси не является зачеркиванием клеток

Таким способом можно определить все простые числа от 5 и больше до технически возможных пределов.

 


Информация о работе «Свойства чисел. Периодическая система чисел»
Раздел: Математика
Количество знаков с пробелами: 14269
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
5841
1
2

... . Менделеев отождествлял ньютоний с эфиром, который у него был похож скорее на физический вакуум Дирака. Коронием должна начинаться и коронием должна заканчиваться периодическая система элементов материи. Д.И. Менделеев утверждал, что "… периодическому закону - будущее не грозит разрушением, а только надстройки и развитие обещает ". Спустя 100 лет мы можем констатировать, что ученый не ошибся. ...

Скачать
26415
2
0

... на подгруппы (главную и побочную) основано на различии в заполнении электронами энергетических уровней. Главную подгруппу составляют s- и р-элементы, а побочную подгруппу — d и f-элементы. Например в IV группу Периодической системы элементов входят следующие элементы: Главная подгруппа (подгруппа углерода) Побочная подгруппа (подгруппа титана) C...2s22p2 Ti...3d24s2 Si...3s23p2 ...

Скачать
18947
1
0

бъективно существующую взаимосвязь между химическими элементами. Поэтому она и была названа Менделеевым «естественной» системой элементов. Периодический закон не имеет равных в истории науки. Вместо разрозненных, не связанных между собой веществ перед наукой встала единая стройная система, объединившая в одно целое все химические элементы. Менделеев указал путь направленного поиска в химии ...

Скачать
63167
2
0

... корней 6 - 4 = 2 и |182 = 2 __ __ Таким образом, при выполнении условияусловия |х > |у для выражения х - у= z верно утверждение, что разница натуральных корней вычитаемых чисел х и у равна натуральному корню из их разницы. ___ ____ _________ n|х - k |у = (n-k) |(x-y) __ __ 2. Если х > у ,а |х < |у Например, 190 - 52 = 138 ____ ___ ____ |190 = 1, |52 = 7 Разница натуральных ...

0 комментариев


Наверх