2.3 Метод Ньютона

В литературе этот метод часто называют методом касательных, а также методом линеаризации. Выбираем начальное приближение С0. Допустим, что отклонение С0 от истинного значения корня С* мало, тогда, разлагая f(C*) в ряд Тейлора в точке С0 , получим

f(C*) = f(C0) + f ¢(C0) (C*-C0) +¼ (8)

Если f ¢(C0) ¹ 0 , то в (8) можно ограничится линейными по DC =C-C0 членами. Учитывая, что f(C*)=0, из (9) можно найти следующее приближение для корня

C1 = C0 – f (C0) / f¢(C0)

или для (n+1)-го приближения

Cn+1= C n – f (C n) / f ¢(C n) (9)

Для окончания итерационного процесса можно использовать одно из двух условий

çCn+1 – Cnç< e

или

çf(Cn+1) ç< e.

Исследование сходимости метода Ньютона проводится аналогично предыдущему случаю. Самостоятельно получить, что при выполнении условия

½f ''(C)/2f'(C)½<1.

метод Ньютона имеет квадратичную скорость сходимости ().

Рис. 3. Графическая интерпретация метода Ньютона для решения уравнения вида f(х)=0.

Построение нескольких последовательных приближений по формуле (9)

С0, С1, …, Сn= C*

приведено на рисунке 3.

Задание

1. Для заданной функции f(x)

·          определите число вещественных корней уравнения f(x)=0, место их расположения и приближенные значения (постройте график или распечатайте таблицу значений).

·          Вычислите один из найденных корней (любой) с точностью e=0,5*10-3.

Для вычислений используйте метод деления отрезка пополам (определите число итераций), а затем этот же корень найдите с помощью метода Ньютона (также определив число итерационных шагов).

Сравните полученные результаты.

Варианты заданий

1. x3 –3x2 +6x – 5 = 0 2. x 3 +sin x –12x-1=0

3. x3 –3x2 –14x – 8 = 0 4. 3x + cos x + 1 =0

5. x2 +4sin x –1 = 0 6. 4x –ln x = 5

7. x6 –3x2 +x – 1 = 0 8. x3 – 0.1x2 +0.3x –0.6 = 0

9. 10. ( x -1)3 + 0.5ex = 0

11. 12. x5 –3x2 + 1 = 0

13. x3 –4x2 –10x –10 = 0 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. x 4- 2.9x3 +0.1x2 + 5.8x - 4.2=0

25. x4+2.83x3- 4.5x2-64x-20=0 26.


МЕТОДЫ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

1.         Постановка задачи

Пусть требуется решить систему n нелинейных уравнений:

(1)

Прямых методов решения системы (1) не существует. Лишь в отдельных случаях эту систему можно решить непосредственно. Например, для случая двух уравнений иногда удаётся выразить одну неизвестную переменную через другую и таким образом свести задачу к решению одного нелинейного уравнения относительно одного неизвестного.

Систему уравнений (1) можно кратко записать в векторном виде:

. (2)

Уравнение (2) может иметь один или несколько корней в области определения D. Требуется установить существование корней уравнения и найти приближённые значения этих корней. Для нахождения корней обычно применяют итерационные методы, в которых принципиальное значение имеет выбор начального приближения. Начальное приближение иногда известно из физических соображений. В случае двух неизвестных начальное приближение можно найти графически: построить на плоскости (x1, x2) кривые f1(x1, x2)=0 и f2(x1, x2)=0 и найти точки их пересечения. Для трех и более переменных (а также для комплексных корней) удовлетворительных способов подбора начального приближения нет.

Рассмотрим два основных итерационных метода решения системы уравнений (1), (2) - метод простой итерации и метод Ньютона.


Информация о работе «Нахождение корня нелинейного уравнения. Методы решения системы нелинейных уравнений»
Раздел: Математика
Количество знаков с пробелами: 10711
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
37732
2
12

... - функции f. Дальше, имеем: . Отсюда , где W'(x) - транспонированная матрица Якоби. Поэтому окончательно , причем . 3. Программная реализация итерационных методов Реализация алгоритмов итерационных методов решения систем нелинейных уравнений будет показана на примере системы: 3.1 Метод простых итераций Приведём систему к виду: Проверим условие ...

Скачать
35539
6
3

... вычисляют в следующем порядке: xjn, xjn–1, …, xj1. 3. Метод Зейделя 3.2.1. Приведение системы к виду, удобному для итераций. Для того чтобы применить метод Зейделя к решению системы линейных алгебраических уравнений Ax = b   с квадратной невырожденной матрицей A, необходимо предварительно преобразовать эту систему к виду x = Bx + c. Здесь B – квадратная матрица с элементами bij (i, ...

Скачать
4486
0
0

... , где Fi – функция n переменных. Решением СНАУ является вектор X=(X1,…,Xn), при подстановке компонент которого в систему каждое её уравнение обращается в верное равенство. При n=3 – точка пересечения трёх поверхностей. Модифицированный метод Ньютона – один из методов, применяющихся для нахождения корня СНАУ. Модифицированный метод Ньютона предполагает наличие начального приближения X0. Суть ...

Скачать
50501
1
22

... на языке Turbo Pascal 7.0 для решении систем линейных алгебраических уравнений, используя метод простой итерации. 1.2 Математическая формулировка задачи Пусть А – невырожденная матрица и нужно решить систему где диагональные элементы матрицы А ненулевые. 1.3 Обзор существующих численных методов решения задачи   Метод Гаусса В методе Гаусса матрица СЛАУ с помощью равносильных ...

0 комментариев


Наверх