Содержание
Введение
Физиология от Гарвея до Павлова
Физиология и экспериментальная медицина
Философия патологии
Общая патология (патологическая анатомия и патологическая анатомия)
Связь общей патологии с медицинской практикой
От «века просвещения» - к веку науки. Клиническая медицина России и других стран Европы (XVIII-XIX вв)
Нобелевские премии в области медицины, физиологии и смежных с ними наук
Заключение
Введение
Чтобы заглянуть в глубь истории патологической физиологии, необходимо узнать о древнейшем учении, впоследствии современной естественной науки – физиологии, и открыть развитие изучения патологии, в анатомии и физиологии, самостоятельно выделившейся только в середине XVIIIв. Чтобы понять принцип патологии, как нарушение процесса онтогенеза, посмотрим в философию патологии. Так же, для процесса восстановления онтогенеза необходима клиническая медицина, снова заглянем в историю, в века просвещения и науки. На мой взгляд, обязательно нужно знать историю возникновения и развития изучаемых наук, такие знания уберегут от ошибок в будущем и смогут помочь и направить в решении вопросов настоящего.
Физиология от Гарвея до Павлова
Часто боль является единственным поводом обращения к врачу; это тревожный сигнал, увеличивающий шансы лечения. В то же время она терзает больного человека, заставляет страдать его близких, вынуждая искать способы ее устранения. Таким образом, боль представляет не только медицинскую проблему. Вопрос избавления пациента от мук превратился в задачу нравственную и, помимо медиков, привлекал внимание философов.
Издавна имели место два основных подхода к проблеме боли. Античные мыслители считали ее злом, требующим борьбы до победного конца, то есть мечтали о полном ее устранении. Противоположную доктрину выдвигала Римско-католическая церковь, представленная схоластической медициной. Святые Отцы рассматривали боль как проявление действия высшей силы, данность Создателя, которому нельзя возражать, тем паче оказывать сопротивление. Поэтому больной должен терпеть и ждать Божьей милости.
В эпоху Возрождения медицина вновь обратилась к рациональным взглядам Античности. Поиском принципиально нового подхода к вопросу боли занялся французский философ, математик и физик Рене Декарт (1596—1650 годы). Одновременно увлекаясь такими разноплановыми дисциплинами, как философия, математика, физика, а затем и физиология, ученый принял для себя четыре логических правила:
— «никогда не принимать за истинное ничего, что не может быть признано таковым с очевидностью, то есть тщательно избегать поспешности;
— делить каждую из рассматриваемых трудностей на столько частей, сколько потребуется, чтобы лучше их разрешить;
— располагать мысли в определенном порядке, начиная с предметов простейших и легкопознаваемых, и восходить мало-помалу, как по ступеням, до познания наиболее сложных, допуская существование порядка даже среди тех, которые в естественном ходе вещей не предшествуют друг другу;
— делать всюду перечни настолько полные и обзоры столь всеохватные, чтобы быть уверенным, что ничего не пропущено».
На примере ожога Декарт впервые подробно описал механизм появления защитной реакции организма. Представив обоснованные предположения относительно рефлекторных проявлений, возникающих при болевых импульсах, французский ученый заложил основы научной физиологии (от Рреч. physis — «природа»). Однако рождение отдельной науки о жизнедеятельности организма и его составляющих частей — клеток, органов, функциональных систем, связано с именем Вильяма Гарвея (1578—1657 годы). Знаменитый английский врач впервые высказал мысль, что «все живое происходит из яйца». Ученый прославился созданием теории кровообращении, опровергавшей многие представления Галена. Легочное кровообращение было открыто независимо и почти одновременно Мигелем Серветом, Реальдо Коломбо (1510—1559 годы) и Габриеле Фаллопио (1523—1562 годы). Последний являлся преемником Везалия и Коломбо в Падуе. Он открыл и описал многие анатомические структуры, в частности полукружные каналы, клиновидные пазухи, тройничный, слуховой и языкоглоточный нервы, канал лицевого нерва и марочные трубы, которые до настоящего времени называют фаллопиевыми.
Вильям Гарвей получил начальное образование в школе Фолькстона, затем прошел курс обучения в Кембридже. В 1598 году отправился получать знания в падуанском университете, считавшемся тогда лучшей медицинской школой. Долгое время занимался под руководством профессора Фабриция Аквапенденте. Трактат Фабриция, касавшийся венозных потоков, навел воспитанника на мысль о кровообращении. Позже ученый говорил, что идея кровообращения появилась в результате соображений о «количестве крови, беспрерывно вступающей в аорту, которое так велико, что если бы кровь не возвращалась из артерий в вены, то за несколько минут последняя опустела бы совершенно». В 1602 году Гарвей получил степень доктора и обосновался в Лондоне, Где его избрали членом столичной коллегии врачей. Начало 1609 года для молодого медика ознаменовалось получением места доктора в госпитале Снятого Варфоломея. До 1623 года он лечил бедных сограждан, пока не получил приглашение стать придворным врачом, а с 1625 года был медиком при короле Карле I. В 1617 году знаменитый ученый излагал свои взгляды ни кровообращение с кафедры анатомии и хирургии в коллегии врачей. Теории коретические положения уже оформились, но были обнародованы много лет спустя в книге «Анатомическое исследование о движении сердца и крови у животных» (1628 год). Фундаментальный труд Гарвея ознаменовал начало современной физиологии. До него в европейской медицине господствовали идеи античных Медиков, преимущественно Галена. Ранее предполагалось наличие в организме двух видов крови: грубой и одухотворенной. Если первая разносилась венами из печени по всему телу, предназначаясь для питания, то вторая двигалась по артериям и снабжала организм жизненной силой. Согласно традиционным взглядам, часть крови могла передаваться через сердце и легкие в артерии. В свою очередь, артерии должны были снабжать вены неким «духом». Однако многие замечали, что это не мешает каждому виду крови сохранять свое автономное движение в собственной системе сосудов. Несмотря на открытия Везалия и Сервета, консервативные убеждения упорно сохранялись, являясь запутанной формой вследствие противоречий, вносимых новейшими исследованиями. Англичанин Гарвей заменил теоретическую путаницу ясным, точным и законченным учением о вечном круговороте крови. Его теория опиралась на немногочисленные эксперименты, но каждая деталь подтверждалась вивисекциями на животных и вскрытиями человеческих трупов. Процесс кровообращения тщательно прослеживался на животных, причем при отсутствии микроскопа. Ученый совершенно не признавал метафизику с ее «археями» и «духами», заменяющими, по его словам, «истинное знание кажущимся». В «Анатомическом исследовании...» не было намека на логику априори (от лат. apriori — «из предшествующего»), которой отличались сочинения его коллег. Труд Гарвея представлял собой истинно прогрессивное научное произведение, где все вопросы решались изучением фактов, вполне доступных наблюдению. Все же автору пришлось выдержать жестокое противодействие со стороны почитателей Античности. В течение 10 лет английский физиолог оставался одиноким среди врагов: признанные авторитеты медицины того времени — Примроз, Паризанус, Франзолий, Ж. де ла Торре — закидывали автора древними цитатами, с пеной у рта доказывая случайность, ошибочность, даже патологический характер его идей. Профессор Пои Патен назвал открытие большого и малого кругов кровообращения «парадоксальным, бесполезным, ложным, невозможным, непонятным, нелепым, вредным для человеческой жизни».
Придворные обязанности нередко отрывали Гарвея-ученого от занятий фитологией. В 1630—1631 годах он сопровождал герцога Леннокса в поездке на материк; в 1633 году ездил с королем в Шотландию; в 1636 году «маялся» в свите германского посла. С началом революции Карл I бежал из столицы, и Гарвей вынужденно последовал за ним. Повстанцы разграбили лондонскую квартиру ученого, уничтожив все рукописи по сравнительной и патологической анатомии, эмбриологии, созданные в результате многолетних исследований. Вильям Гарвей находился при дворе Карла во время знаменитого Эджипмпского сражения, но по окончании народной войны поселился в Оксфорде: тихий город временно служил королевской резиденцией. Придворный медик был назначен деканом в университете, но в 1646 году Оксфорд осадили повстанцы, и Гарвей вновь отправился странствовать. Однако с этого времени он отошел от политики, в которой ранее принимал участие. Поселившись в Лондоне, на свои средства построил дом для заседаний коллегии врачей, расположив здесь же библиотеку, кроме того, коллеги получили от Гарвея богатую коллекцию медицинских препаратов, инструментов и книг.
В последние годы жизни ученый занимался преимущественно эмбриологией, написав книгу «Изучение зарождения животных» (1651 год). Этот труд стал первым систематическим, законченным трактатом по эмбриологии, где описан процесс развития «яйцеродящих животных». Наблюдения приводились невооруженным глазом. Развитие зародыша прослежено удивительно точно, но текст не дополнялся иллюстрациями, что невыгодно отличало книгу Гарвея от сходного труда М. Мальпиги. Материал для исследования предоставлял Карл I, не жалевший для науки своих охотничьих трофеев. Король отдавал в лабораторию оленей, мелких зверушек и птицу.
Именно Гарвей первым высказал мысль о том, что пористая скорлупа ни пропускает воздух к зародышу. В несколько туманной форме книга знакомила с основными идеями эмбриологии. Автор описал первичную идентичность различных типов, постепенное формирование органов, сходство переходных форм в развитии зародыша человека и животных. Несмотря на недоработку отдельных положений, ученый обогатил эмбриологию крупными открытиями, четкими обобщениями, заложив основу для дальнейших исследований. Ко времени выхода в свет «Изучения зарождения животных» заслуги автора неожиданно нашли признание в ученом мире. Вильям Гарвей доживал свои последние годы в уважении и славе. Молодые английские физиологи считали его своим предшественником. Создателю теории кровообращения посвящали стихи известные поэты. По инициативе Лондонской медицинской коллегии в зале заседаний общества поставили статую Гарвея, а в 1654 году он был избран главой столичных врачей. Однако больной, чрезвычайно уставший физиолог отказался от почетного звания президента Лондонской медицинской коллегии, сославшись на старость. В конце июня 1657 года Гарвей заметил у себя первые признаки паралича. Осознав приближение смерти, до начала агонии он успел распорядиться относительно своего научного наследия.
Одним из первых теорию Гарвея признал врач, физиолог и анатом Санторио, произносивший свое итальянское имя на латинский манер— Санкториус (1561 — 1636 годы). Будучи представителем ятрофизики, профессор университета в Падуе впервые применил экспериментальный метод исследования и математическую обработку данных, а также изобрел прибор для измерения температуры человеческого тела.
Громоздкий, но довольно точный термометр со- : стоял из шарика и длинной извилистой трубки, заполненной подкрашенной жидкостью. Температура тела измерялась посредством произвольно нанесенных делений, после того как человек согревал шарик руками или брал его в рот. Изменение уровня жидкости происходило в течение 10 ударов пульса. Прибор Санкториуса стал достижением медицины своего времени; его установили во дворе дома ученого и проводили эксперименты на всех желающих.
Позже неутомимый исследователь Санкториус сконструировал специальную камеру-весы, где изучал обмен веществ, лично выступая в качестве объекта опытов.
Сложный прибор позволял производить количественную оценку усвояемости пищевых продуктов и выделений организма путем взвешивания самого себя. Результаты экспериментов были представлены в трактате «О медицине равновесия» (1614).
Одновременно с Санкториусом над созданием термоскопа работал ярый противник схоластики, механик, астроном и естествоиспытатель Галилео Галилей (1564—1642 годы). Прибор великого итальянца представлял собой стеклянный шар с тонким припаянной трубочкой, также выолненной из стекла. Когда ее свободный конец погружался в сосуд с подкрашенной водой или вином, шар нагревался человеческим теплом, а воздух расширялся. По мере остывания шара вода поднималась до определенной метки. Приборы Галилея и Санкториуса имели существенный недостаток: показания термоскопов зависели от перепадов атмосферного давления. Это несовершенство отчасти исправил император Фердинанд II Габсбург, лично участвовавший в разработке оригинального термоскопа. В 1641 году его придворные могли увидеть действие устройства, внешне напоминавшего маленькую лягушку, полость прибора заполнялась жидкостью, в которой плавали шарики различной плотности. Температура тела измерялась по количеству Шариков, оставшихся на поверхности после согревания и уплотнения кости. Несмотря на всевозможные виды термометров, изобретенных в XVII веке, в клинической практике они начали применяться только спустя два столетия.
Согласно всеобщему убеждению, физиология обрела современную направленность после открытий русского медика И. Павлова. До него Исследования в области жизнедеятельности организма имели механический характер, хотя для того времени и уровня развития и это являлось прогрессом.
Представления Декарта получили продолжение в работах швейцарского естествоиспытателя, врача и поэта Альбрехта фон Галлера (1708—1777 годы), оставившего потомкам дидактическую поэму «Альпы» и философское эссе «О происхождении зла». Автор сочинений по анатомии, эмбриологии, ботанике, хирургии выступал против теории эпигенеза в защиту преформации. Являясь одним из основоположников экспериментальной физиологии, он отрицал идеи зародышевого развития по Гарвею, полагая наличие в клетках неких материальных структур, предопределяющих развитие эмбриона. В монографии «Элементы физиологии» Галлер пытался выявить суть процесса дыхания в легких, установил зависимость силы сокращения сердца от величины стимула и определил свойства мышечных волокон — такие, как сократимость, упругость, раздражимость. Швейцарский врач был первым физиологом, заметившим непроизвольное сокращение сердца под действием силы самого органа.
Начало одному из разделов физиологии, изучающему электрические явления в живом организме, положили эксперименты итальянского анатома Луиджи Гальвани (1737—1798 годы). Позже названный основателем экспериментальной электрофизиологии, он первым занялся изучением электрических явлений при мышечном сокращении, объединив их в понятие «животное электричество». Важные сведения получены из трудов другого представителя электрофизиологии, немецкого физиолога и философа Эмиля Генриха Дюбуа-Реймона (1818—1896 годы). Его заслугой стало определение закономерностей, характеризовавших электрические явления в мышцах и нервах.
Французский физиолог Франсуа Мажанди (1783—1855 годы) всегда выступал против идей витализма. Доказательства ошибочности теорий о «жизненной силе» представлены в его аргументированных опытных данных относительно чувствительных и двигательных нервных волокон (опубликованы в 1822 году). Эксперименты французского ученого обосновали соответствие между структурой и функцией, что впоследствии было сформулировано в законе Бэлла-Мажанди. Огромное количество фундаментальных трудов по физиологии центральной нервной системы и органов чувств, сравнительной анатомии, по вопросам эмбрионального развития принадлежит немецкому естествоиспытателю Иоганнесу Петеру Мюллеру (1801-1858 годы). Несмотря на создание вполне материалистичном рефлекторной теории, физиолог из Германии считался представителем так называемого физиологического идеализма. 11|юдолжателями его идей стали русские медики И. Сеченов, И. Павлов и А. Филофитский. К научной школе Мюллера в свое время примкнули R Вирхов, I 1ольмгольц, Г. Дюбуа-Реймон, Т. Шванн. Канадский физиолог Фредерик Грипнт Бантинг (1891 — 1941 годы), долгое время исследовал секрецию поджелудочной железы. Благодаря открытию гормона инсулина он стал лауреатом Нобелевской премии 1923 году.
Во второй половине XIX века европейские физиологи сделали значительные открытия относительно функций отдельных органов и систем, а также в исследовании некоторых наиболее простых механизмов регуляции деятельности сердца, сосудов, дыхания, мышц. Однако многочисленные знания имели хаотичный, разрозненный характер. Четкому представлению жизнедеятельности организма и его отношении к природе мешало отсутствие единой теории о тесной взаимосвязи различных функций организма. Позже этот период назвали временем аналитической физиологии. Тенденция к обобщению имеющихся данных, которая выражалась и попытках изучения нервной системы, нашла логичное завершение в работах русских физиологов И. Сеченова и И. Павлова.
Физиология и экспериментальная медицина
Физиология (греч. physiologia; от physis — природа и logos — учение) — одна из древнейших естественных наук. Она изучает жизнедеятельность целого организма, его частей, систем, органов и клеток в тесной взаимосвязи с окружающей природой. История физиологии включает в себя два периода: эмпирический и экспериментальный, который можно подразделить на два этапа — до Павлова и после него.
Эмпирический период.
Первые представления о работе отдельных органов человеческого тела начали складываться в глубокой древности, и изложены в дошедших до нас сочинениях философов древнего Востока, древней Греции и древнего Рима. В период классического средневековья, когда господствовала церковная схоластика, и преследовались попытки опытного познания природы, в развитии естествознания наблюдался застой.
В эпоху Возрождения анатомо-физиологические и естественнонаучные исследования, произведенные А. Везалием, М. Серветом, Р. Коломбо, И. Фабрицием, Г. Фаллопием, Г. Галилеем, С. Санторио и другими, подготовили почву для будущих открытий в области физиологии.
Экспериментальный период.
Физиология как самостоятельная наука, основанная на экспериментальном методе исследования, ведет свое начало от работ Уильяма Гарвея (Harvey, William, 1578-1657), который математически рассчитал и экспериментально обосновал теорию кровообращения.
Бурное развитие естественных наук в тот период было связано с потребностями молодого класса буржуазии, заинтересованного в развитии промышленного производства. Установленные в эксперименте законы механики, с помощью которых тогда пытались объяснить все явления материального мира, переносились на живые существа (ятромеханика и ятрофизика). Таким образом, физиология XVII-XVIII столетий носила механистический, метафизический характер, для того этапа развития науки лось явлением прогрессивным. С позиций законов механики ученые пытались объяснить работу двигательного аппарата, механизм вентиляции легких, функции почек и т.д. Большой популярностью пользовалась концепция животных-автоматов, развивавшаяся с Декартом (Descartes, Rene, 1596), который распространил принцип механистического движения и на нерв-систему животных. Он выдвинул идею о рефлексе как отражении от мозга 'животных духов", переходящих с одного нерва на другой, и таким образом разработал в простейшем виде рефлекторную дугу. (Термин reflexus, т.е. отраженный, ввел в физиологию чешский ученый И.Прохаска, 1749-1820.) Используя законы оптики, Декарт пытался объяснить работу глаза человека. Механистические взгляды Декарта для того времени были прогрессивными и оказали положительное влияние на дальнейшее развитие естествознания. В то же время Декарт полагал, что мышление является способностью души и не имеет ничего общего с материей, единственным свойством которой он считал протяженность. Его дуализм отразился на мировоззрении многих естествоиспытателей последующих поколений.
Большую роль в развитии физиологии сыграл швейцарский естествоиспытатель, врач и поэт Альбрехт Галлер (Haller, Albrecht von, 1708-1777). Он пытался уяснить сущность процесса дыхания в легких, установил три свойства мышечных волокон (упругость, сократимость и раздражимость), определил зависимость силы сокращения от величины стимула и тем самым развил представления Декарта о рефлексе. Галлер первым заметил, что сердце сокращается непроизвольно под действием силы, которая находится в самом сердце. Выдающимся достижением XVIII в. явилось открытие биоэлектрических явлений ("животного электричества") в 1791 г. итальянским анатомом и физиологом Луиджи Гальвани (Galvani, Luigi Aloisio, 1737-1798), что положило начало электрофизиологии.
К XIX в. было накоплено достаточно много физиологических знаний. Однако в науке продолжало господствовать метафизическое мышление, которое, исчерпав свою прогрессивную роль, на данном этапе развития науки приводило к разработке идеалистических, например, виталистических (от лат. vitalis — жизненный) концепций.
Против представлений об особой "жизненной силе" активно выступал один из основоположников экспериментальной медицины — французский физиолог Франсуа Мажанди (Magendie, Francois, 1783-1855). Продолжая исследования И. Прохаски, он доказал раздельное существование чувствительных (задние корешки) и двигательных (передние корешки спинного мозга) нервных волокон (1822), что утверждало соответствие между структурой и функцией (закон Бэлла-Мажанди).
Среди основоположников физиологии и экспериментальной медицины выдающееся место занимает немецкий естествоиспытатель Иоганнес Мюллер (Muller, Johannes Peter, 1801-1858), член Прусской (1834) и иностранный член-корреспондент Петербургской академии наук. Ему принадлежат фундаментальные исследования и открытия в области физиологии, патологической анатомии, эмбриологии. В 1833 г. он сформулировал основные положения рефлекторной теории, которые нашли дальнейшее развитие в трудах И.М.Сеченова и И.П.Павлова.
И.Мюллер внес большой вклад в материалистическое познание природы. Он создал уникальную по количеству последователей и их вкладу в науку научную школу. К ней принадлежат Р. Вирхов, Г. Гельмгольц, Ф. Генле, Э. Дюбуа-Реймон, Э. Пфлюгер, Т. Шванн. В его лаборатории работали многие ученые России: А.М. Филомафитский, И.М. Сеченов и другие.
В России создание основ материалистического направления в физиологии, прежде всего связано с деятельностью Алексея Матвеевича Фшюмафитского (1807-1849) — основоположника московской физиологической школы. В 1833 г. он защитил докторскую диссертацию "О дыхании птиц", затем в течение двух лет работал в Германии в лаборатории И.Мюллера. В 1835 г. А.М.Филомафитский стал профессором Московского университета, а в 1836 г. создал учебник "Физиология, изданная для руководства своих слушателей" (1836) —первый отечественный учебник физиологии.
А.М.Филомафитский был одним из первых пропагандистов экспериментального метода в российской физиологии медицине. Вместе с Н.И.Пироговым ад разработал метод внутривенного наркоза, изучал вопросы физиологии дыхания, пищеварения, переливания крови ("Трактат о переливании крови", 1848); создал аппараты для переливания крови, маску для эфирного наркоза и другие физиологические приборы.
В середине XIX в. развитие физиологии было тесно связано с важнейшими открытиями и обобщениями в области физики, химии, биологии. На их основе были разработаны новые методы и приемы физиологического эксперимента.
В лаборатории выдающегося физиолога Карла Людвига (Ludwig, Karl F.W., 1816-1895) — создателя одной из крупнейших школ в истории физиологии — были сконструированы кимографы (1847) и ртутный манометр для записи кровяного давления, "кровяные часы" для измерения скорости кровотока, плетизмограф, определяющий кровенаполнение конечностей и другие приборы для физиологических экспериментов.
Основоположник нервно-мышечной физиологии немецкий физиолог Эмиль Дюбуа-Реймон (Du Bois-Reymond, Emile, 1818-1896), продолжая исследования, начатые Гальвани и Вольта, разработал новые методы электрофизиологического эксперимента и открыл законы раздражения и явления электрона (1848). Им сформулирована также молекулярная теория биопотенциалов.
Немецкий физик, математик и физиолог Герман Гельмгольц (Helmholltz Herman,1821-1894), заложивший основы физиологии возбудимых тканей крупные открытия в области физиологической акустики и физиологии зрения, изучал процессы сокращения мышц явление тетануса, 1854 и впервые измерил скорость проведения возбуждения. По нерву лягушки (1850).
Выдающийся французский физиолог Бернар (Bernard, Claude, 1813-1878) детально изучил физиологические механизмы сокоотделения и значение Переваривающих свойств слюны, желудочного сока и секрета поджелудочной железы для здорового и больного организма, заложив, таким образом, основы Экспериментальной патологии. Он создал теорию сахарного мочеизнурения (высшая премия Французской Академии наук, 1853), занимался исследованием нервной регуляции кровообращения, выдвинул концепцию о значении постоянства внутренней среды организма (основы учения о гомеостазе).
Таким образом, во второй половине XIX в. были сделаны большие успехи в изучении функций отдельных органов и систем, в исследовании некоторых наиболее простых механизмов регуляции деятельности сердца (Э. Вебер, И.Ф. Цион, И.П. Павлов), сосудов (А.П.Вальтер, К.Бернар, К.Людвиг, И.Ф.Цион, Ф.В. Овсянников), дыхания (Н.А. Миславский), скелетных мышц (Ф. Мажанди, И.М. Сеченов, Н.Е. Введенский) и других органов и систем. Но все эти знания остались разрозненными, они небыли объединены теоретическими обобщениями о взаимной связи различных функций организма между собой. Это был период Накопления информации, и потому превалировал анализ явлений (аналитическая физиология). Однако уже намечаюсь и тенденция к синтезу, которая продлялась в стремлении к изучению функций центральной нервной системы в первую очередь рефлексов.
Выдающийся вклад в развитие рефлекторной теории, которая является научной из основных теоретических концепций физиологии и медицины, внес великий русский ученый, выдающийся представитель российской физиологической школы и основоположник научной психологии Иван Михайлович Сеченов (1829-1905).
В 1856 г. он закончил медицинский факультет Московского университета и был направлен за границу, где проходил подготовку к профессорскому званию в лабораториях И.Мюллера, Э.Дюбуа-Реймона, К.Людвига, К.Бернара. По возвращении в Россию в 1860 г. И.М.Сеченов защитил докторскую диссертацию "Материалы для будущей физиологии алкогольного опьянения". Его работы по физиологии дыхания и крови, газообмену, растворению газов в жидкостях и обмену энергии заложили основы будущей авиационной и космической физиологии. Однако особое значение имеют его труды в области физиологии центральной нервной системы и нервно-мышечной физиологии.
Во времена И.М.Сеченова представления о работе мозга были весьма ограниченными. В середине XIX в. еще не было учения о нейроне как структурной единице нервной системы. Оно было создано лишь в 1884 г. испанским гистологом, лауреатом Нобелевской премии (1906) С. Рамон-и-Кахалем (Ramon-y-Cajal, Santjago, 1852-1934). Не существовало и понятия о синапсе, которое было введено в 1897 г. английским физиологом Ч.Шеррингтоном (Sherrington, Charles Scott, 1857-1952), сформулировавшим принципы нейронной организации рефлекторной дуги. Ученые того времени не распространяли рефлекторные принципы на деятельность головного мозга.
И.М.Сеченов первым выдвинул идею о рефлекторной основе психической деятельности и убедительно доказал, что "все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы". Открытое им центральное (сеченовское) торможение (1863) впервые продемонстрировало, что наряду с процессом возбуждения существует другой активный процесс — торможение, без которого немыслима интегративная деятельность центральной нервной системы.
Классическим обобщением исследований И.М.Сеченова явился его труд "Рефлексы головного мозга" (1863), который И.П.Павлов назвал "гениальным взмахом русской научной мысли". Суть его лаконично выражена в первоначальных названиях, измененных по требованию цензуры: "Попытка свести способ происхождения психических явлений на физиологические основы" и "Попытка ввести физиологические основы в психические процессы". Эта научная работа была написана И.М.Сеченовым по заказу редактора журнала "Современник" поэта Н.А.Некрасова. Перед И.М.Сеченовым была поставлена задача: дать анализ современного состояния естествознания. Прогрессивные естественнонаучные взгляды автора, подтвержденные описанием физиологических опытов, заставили цензуру признать это сочинение опасным: его публикация в журнале "Современник" была запрещена. Однако в этом же, 1863году работа И.М.Сеченова была опубликована в "Медицинском вестнике", затем вышла отдельным изданием и получила огромный резонанс в общественной и научной жизни России.
Отстаивая принципы материалистического естествознания, И. М.Сеченов утверждал, что "среда, в которой существует животное, оказывается фактором, определяющим организацию... Организм без внешней среды... "невозможен, поэтому в научное определение организма должна входить и среда, влияющая на него". И.П.Павлов писал, поэтому поводу: "...вместе с Иваном Михайловичем и «ужом моих дорогих сотрудников мы приобрели для могучей власти физиологического исследования вместо половинчатого весь нераздельно животный организм. И это — целиком наша русская неоспоримая заслуга в мировой науке, в общечеловеческой мысли". И.М.Сеченов создал крупную физиологическую школу в России. Его учениками были Б.Ф.Вериго, Н.Е.Введенский, В.В.Пашутин, Г.В.Хлопин, М.Н.Шатерников и многие другие.
Николай Евгеньевич Введенский (1852-1922) — преемник И.М.Сеченова по кафедре физиологии Петербургского университета — внес значительный клад в развитие физиологии возбудимых тканей и нервной системы в целом. В1887 г. он защитил докторскую диссертацию "О соотношении между раздражением возбуждением при тетанусе". Используя телефонный аппарат, он впервые прослушал ритмическое возбуждение в нерве (1884) Изучая явление тетануса, показал способность мионеврального синапса трансформировать импульсы и на этой основе открыл явления оптимума и пессимума (Wedensky in-hibitor) раздражения (1886). Введенский ввел понятие лабильности и создал учение о парабиозе, которое изложено в его монографии "Возбуждение, торможение и наркоз" (1901). Дальнейшее развитие физиологии возбудимых тканей связано с работами А.А.Ухтомского, Б.Ф. Вериго, В.Ю.Чаговца, Д.Н.Насонова и других ученых. Аналитический характер физиологической науки во второй половине XIX в. к разделению явлений, протекающих в живом организме, на две категории 1) "внутренние", вегетативные процессы (обмен веществ, дыхание, кровообращение и т. п.) и 2) "животные" (анимальные), определяющие поведение животных, которое физиология того времени еще не могла объяснить. Это вело либо к вульгарному материализму (Ф.К. Брюхнер, Я.Молешотт, К.Фогт), либо к агностицизму, т. е. утверждению о непознаваемости поведения и сознания (Э.Дюбуа-Реймон и другие).
Для того чтобы вывести физиологию из тупика аналитического метода, был необходим принципиально новый подход к познанию деятельности живых организмов. Впервые его элементы формируются в работах И.М.Сеченова, который первым сумел применить эволюционный метод к изучению психических функций. Переломный момент связан с деятельностью Ивана Петровича Павлова (1849-1936)— создателя учения о высшей нервной деятельности, основателя крупнейшей физиологической школы современности, новатора методов исследования в физиологии.
В 1879 г. И.П.Павлов окончил Медико-хирургическую академию и был приглашен С.П.Боткиным в физиологическую лабораторию при его клинике, где руководил фармакологическими и физиологическими исследованиями. В лаборатории С.П.Боткина И.П.Павлов выполнил свою докторскую диссертацию "Центробежные нервы сердца" (1883), а затем начал исследования по физиологии пищеварения. В течении двух лет (1884-1886) он работал в лабораториях Р.Гейденгайна и К.Людвига в Германии, после чего снова вернулся в лабораторию Боткина.
В 1890 г. И.П.Павлов был избран профессором фармакологии (а в 1895 г. — профессором физиологии) Военно-медицинской академии (где работал до 1925 г.) и почти одновременно— заведующим физиологическим отделом в Институте экспериментальной медицины в Петербурге. Исследования Павлова в области физиологии сердечно-сосудистой и пищеварительной систем и высших отделов центральной нервной системы являются классическими. В 1897 г. вышли в свет его "Лекции о работе главных пищеварительных желез", явившиеся обобщением научных исследований в области пищеварения — практически заново созданного им раздела физиологии. Несмотря на языковый барьер, работы И.П.Павлова и его сотрудников по Институту экспериментальной медицины стали известны во всем мире. В Каролинском институте (Швеция), который с 1901 г. получил право присуждения Нобелевских премий по физиологии и медицине, имя И.П.Павлова часто называлось в списках кандидатов в лауреаты. Однако вызывало вопрос одно обстоятельство: сам И.П.Павлов редко фигурировал в качестве соавтора в работах своих сотрудников, и Каролинский институт направил в Петербург своего представителя профессора Карла Тигерштеда для того, чтобы выяснить, кто же возглавляет столь плодотворную научную деятельность этого коллектива. В результате в 1904 г.' И.П.Павлов был удостоен Нобелевской премии по физиологии и медицине "в знак признания его работ по физиологии пищеварения, которые позволили изменить и расширить наши знания в этой области".
Исходя из тезиса "для естествоиспытателя — все в методе", И.П.Павлов ввел в практику физиологических исследований метод хронического эксперимента, благодаря которому стало возможным изучение целостного, практически здорового животного.
Опыты на "хронически оперированных" животных проводились физиологами и до Павлова. Однако они не были полноценными либо по замыслу, либо по методике выполнения. Так, метод изолированного "малого желудочка", предложенный Р.Гейденгайном (Heidenhain, Rudolf Peter Heinrich, 1834-1897), лишал изолированный участок иннервации. Метод хронического эксперимента, разработанный И.П.Павловым, позволил ему экспериментально обосновать принцип нервизма — идею о решающей роли нервной системы в регуляции функционального состояния и деятельности всех органов и систем организма.
Методологической основой его концепции явились три основных принципа: единство структуры и функции, детерминизм, анализ и синтез. Изучая поведение животных, И.П.Павлов выявил рефлексы нового типа, которые формируются и закрепляются при определенных условиях окружающей среды. Павлов назвал их условными, в отличие от уже известных прирожденных рефлексов, которые имеются от рождения у всех животных данного вида (их Павлов назвал безусловными). Было показано также, что условные рефлексы вырабатываются в коре больших полушарий головного мозга, что сделало возможным экспериментальное изучение деятельности 'коры больших полушарий в норме и патологии. Результатом этих исследований явилось создание учения о высшей нервной деятельности — одного из величайших достижений естествознания XX в.
Деятельность И.П.Павлова и созданной им научной школы составила эпоху в развитии физиологии.
Философия патологии
Общая теория саморегулирующихся систем возникла сравнительно недавно и в настоящее время еще находится в начальной стадии развития. Однако отдельные стороны этой теории уже имеют достаточно обширную и глубокую теоретическую базу. Значительное место в создании теории саморегулирующих систем принадлежит биологии, физиологии и патологии.
В биологии, физиологии и патологии процесс, который ныне назван управлением с обратной связью, был осознан как процесс саморегуляции (ауторегуляции) задолго до возникновения кибернетики как науки. Свойство организма поддерживать на определенном уровне основные жизненные константы, было отмечено уже давно. Когда К. Бернар (1878) писал, что «все жизненные процессы имеют только одну цель: поддержание постоянства условий жизни во внутренней среде», то он имел в виду именно это. В сентябре 1889 г. И. М. Сеченов указывал на то, что живой организм представляет собой «своеобразно устроенную машину, все работы которой направлены, в конце концов, к тому, чтобы поддерживать индивидуальную жизнь, т. е. сохранять, наперекор разрушающим влияниям, анатомическую и физиологическую целость тела в течение более или менее долгого времени». В работе «Физиология нервных центров» он развивает эту мысль: «В животном, как самодействующей машине, регуляторы, очевидно, могут быть только автоматическими, т. е. приводятся и действие измененными условиями в состоянии или ходе машины, и развивать деятельности, которыми эти неправильности устраняются... В отношении мышц и многих желез как рабочих органов нервная система представляет собрание разнообразных. регуляторов их деятельности; притом действие регуляторов должно быть согласовано с интересами организма, в смысле обеспечения анатомической и физиологической сохранности тела... Устройство регуляторов должно отвечать следующим основным условиям: снаряд должен быть чувствителен ко всяким нарушениям правильности в состоянии или ходе машины и направлять деятельность рабочих органов к устранению вытекающих отсюда неудобств для организма. Нервные регуляторы так и устроены.
Патологический процесс — сложная динамическая саморегулирующаяся система, процесс «аварийного регулирования в живом организме». Поэтому необходимо рассмотреть и сравнить с точки зрения единства и качественного различия физиологическую и патологическую саморегуляцию, или «нормальные программы человека (физиология)» и «программы болезни (патология)».
По определению В. Д. Моисеева, всякая сложная динамическая система характеризуется способностью изменять свое общее состояние (под влиянием внешних и внутренних факторов) и тем самым обеспечивать выполнение свойственной ей функции. Он формулирует основной закон саморегулирующейся системы: «Каждая самоуправляющаяся система, независимо от ее принципа действия, конструкции и материального субстрата, при своем функционировании способна одинаково активно реагировать на внешние воздействия, т. е. одинаково с количественной стороны принимать, накапливать и перерабатывать поступающую к ней информацию и путем автоматического целенаправленного изменения состояния соответствующим образом организованных составных элементов обеспечивать свое существование или выполнение свойственных ей функций». По А. Я. Лернеру, динамическая система характеризуется переходом из одного состояния в другое, причем этот переход совершается не мгновенно, а через переходные состояния; поэтому основными режимами динамических систем являются: равновесный, переходный и периодический. На аналогичные черты динамических саморегулирующихся систем указывают и другие авторы. Многие авторы подчеркивают, что сложно динамические системы с их саморегуляцией подчиняются особым закономерностям. По мнению П. К. Анохина, «саморегуляция как всеобщий закон деятельности организма должна стать предметом самостоятельного исследования». X. Дрипель пишет: «Циклические замкнутые цепи действий подчиняются особым динамическим закономерностям, которые можно причинно вывести из свойств составных элементов, но не следует сводить только к этим свойствам. Цикл регулирования есть новое функциональное образование с новыми свойствами, которые являются чем-то большим, чем сумма свойств первичных элементов. Замкнутость действия обусловливает наличие колебаний, которые могут иметь периодический или апериодический характер в зависимости от параметров системы и прежде всего от ее устойчивости. Для математической обработки таких процессов техника регулирования предоставляет в наше распоряжение законченную теорию, аппарат представлений и понятий которой можно постичь и научиться использовать, затратив сравнительно небольшие математические усилия». Представляется, что ранее нами сформулированный закон реактивности живых систем и может объяснить основную сущность динамической саморегуляции, закон реактивности ограничивает процессы самодвижения биологической системы определенными рамками, пределами, в которых реакции на внешние и внутренние раздражения (воздействия) направлены на самосохранение анатомофизиологической природы живого и механизмом которых является прямая и обратная связь.
Общая патология (патологическая анатомия и патологическая анатомия)
Патологическая анатомия (от греч. pathos — болезнь) — наука, изучающая структурные основы патологических процессов, — выделилась в середине XVIII в. Ее развитие в новой истории условно делится на два периода: макроскопический (до середины XIX в.) и микроскопический, связанный с применением микроскопа.
Макроскопический период.
О необходимости изучения анатомии не только здорового, но и больного организма писал еще Френсис Бэкон (Bacon, Francis, I561-1626) —выдающийся английский философ и государственный деятель, который, не будучи врачом, во многом определил пути дальнейшего развития медицины
Во второй половине XVI в. в Риме Б. Евстахий первым ввел в римском госпитале систематическое вскрытие умерших и, таким образом, способствовал становлению патологической анатомии.
Начало патологической анатомии как науке положил соотечественник Евстахия — итальянский анатом и врач Джованни Баттиста Морганьи (Morgagni, Giovanni Baltista, 1682-1771). В возрасте 19 лет он стал доктором медицины, в 24 года возглавил кафедру анатомии Болонского университета, а через пять лет — кафедру практической медицины Падуанского университета. Производя вскрытия умерших, Дж.Б.Морганьи сопоставлял обнаруженные им изменения пораженных органов с симптомами заболеваний, которые он наблюдал при жизни больного как практикующий врач. Обобщив собранный таким образом огромный по тому времени материал (700 вскрытий) и труды предшественников, в том числе и своего учителя — профессора анатомии и хирургии Болонского университета Антонио Вальсальвы (Valsalva, Antonio Maria, 1666-1723), Дж.Б.Морганьи опубликовал в 1761 г. классическое шеститомное исследование "О местонахождении и причинах болезней, открываемых посредством рассечения" ("De sedibus et causis morborum per anatomen indagatis").
Дж. Б.Морганьи показал, что каждая болезнь вызывает определенные изменения в конкретном органе и определил орган как место локализации болезненного процесса (органопатология). Таким образом, понятие болезни было соединено с конкретным материальным субстратом, что нанесло серьезный удар по метафизическим, виталистическим теориям. Сблизив анатомию с клинической медициной, Морганьи положил начало клинико-анатомическому принципу и создал первую научно обоснованную классификацию болезней. Признанием заслуг Дж. Б.Морганьи явилось присуждение ему почетных дипломов академий наук Берлина, Парижа, Лондона и Петербурга.
Важный этап в развитии патологической анатомии связан с деятельностью французского анатома, физиолога и врача Мари Франсуа Ксавье Биша (Bichat, Marie Francois Xavier, 1771-1802). Развивая положения Морганьи, он впервые доказал, что жизнедеятельность отдельного органа слагается из функций различных тканей, входящих в его состав, и что патологический процесс поражает не весь орган, как полагал Морганьи, а только отдельные его ткани (тканевая Патология). Не используя микроскопическую технику, которая в то время была не несовершенна, Биша заложил основы учения о тканях - гистологии. Учение Биша получило дальнейшее развитие в трудах видных представителей школы Ж.Н.Корвизара: Р.Т.Лаеннека , Гаспара Лорана Бэйля (Bayle, Gaspard Laurent, 1774-1816), Ф.Мажанди и других.
Микроскопический период.
В середине XIX в. развитие патологии проходило в борьбе двух направлений: гуморального (от лат. humor — влага, жидкость), уходящего корнями в философские учения древнего Востока и древней Греции; и появившегося позднее — солидарного (от лат. solidus — плотный, твердый), первые представления о котором развивались Эразистратом и Асклепиадом.
Ведущим представителем гуморального направления был венский патолог, чех по национальности Карл Рокитанский (Rokitansky, Karl, 1804-1878), член Венской и Пражской академий наук. В 1844 г. он создал первую в Европе кафедру патологической анатомии. Его трехтомное "Руководство патологической анатомии" ("Handbuch der speciellen pathologischen Anatomic", 1842-1846), составленное на основе более чем 20.000 вскрытий, произведенных с применением макро- и микроскопических методов исследования, выдержало три издания и было переведено на английский и русский языки. Основной причиной болезненных изменений Рокитанский считал нарушение состава жидкостей (соков) организма — дискразию (термин древнегреческих врачей). В то же время местный патологический процесс он рассматривал как проявление общего заболевания. Понимание болезни как общей реакции организма было положительной стороной его концепции. В середине XIX в. гуморальная патология Рокитанского вступила в резкое противоречие с новыми фактическими данными. Применение микроскопа вывело естествознание на уровень клеточного строения и резко расширило возможности морфологического анализа в норме и патологии.
Научные принципы морфологического метода в патологии заложил Рудольф Вирхов (Virchow, Rudolf, I82I-1902) —немецкий врач, патолог и общественный деятель.
Руководствуясь теорией клеточного строения (1839), Р.Вирхов впервые применил ее при изучении больного организма и создал теорию целлюлярной (клеточной) патологии, которая изложена в его статье "Целлюлярная патология как учение, основанное на физиологической и патологической гистологии" ("DJS Cellularpathologie...", 1858).
По Вирхову, жизнь целого организма есть сумма жизней автономных клеточных территорий; материальным субстратом болезни является клетка (т.е. плотная часть организма, отсюда термин "солидарная" патология); вся патологиям есть патология клетки"... все наши патологические сведения необходимо свести на изменения в элементарных частях тканей, в ячейках".
Некоторые положения целлюлярной теории патологии Р.Вирхова противоречили учению о целостности организма, были подвергнуты критике (И.М.Сеченов, Н.И.Пирогов и др.) еще при жизни автора. Тем не менее, в целом теория целлюлярной патологии была шагом вперед по сравнению с теорией тканевой патологии Биша и гуморальной патологии Рокитанского. Она быстро получила всеобщее признание и оказала положительное влияние на последующее развитие медицины. Р.Вирхов был избран почетным членом научных обществ и академий почти всех стран Европы.
Рудольф Вирхов внес большой вклад становление патологической анатомии как науки. Используя метод микроскопии, он впервые описал и изучил патологическую анатомию воспалений, лейкоцитоза, эмболии, тромбоза, флебитов, лейкемий, исследовал амилоидоз почки, жировое перерождение, туберкулезную природу волчанки, клетки нейроглии и т.д. Р.Вирхов создал терминологию и классификацию основных патологических состояний. В 1847 г. он основал научный журнал "Архив патологической анатомии, физиологии и клинической медицины", в наши дни издаваемый под названием "Архив Вирхова" ("Virchow s Archiv"). Р.Вирхов является также автором многочисленных трудов по общей биологии антропологии, этнографии и археологии.
На смену целлюлярной теории патологии, сыгравшей в свое время прогрессивную роль в развитии науки, пришло функциональное направление, основанное на учении о нейрогуморальной и гормональной регуляции. Однако роль клетки в патологическом процессе не была перечеркнута: сегодня клетка и ее ультраструктура рассматриваются как интегральные составные части целостногo организма.
В России начало развитию патологической анатомии и судебно-медицинским вскрытиям было положено в 1722 г., когда вышел регламент Петра I о госпиталях. В нем предписывалось обязательное вскрытие умерших насильственной смертью. В 1835 г. "Уставом о госпиталях" было введено обязательное вскрытие всех умерших в больницах. Первая кафедра патологической анатомии в России была создана в 1849 г. в Московском университете. Ее возглавил к.И.Полунин (1820-1888) —основатель первой в России патологоанатомической школы. Большой вклад в развитие патологической анатомии в России внес М.Н.Никифоров (1858-1915) — автор одного из первых в стране учебников по патологической анатомии, многократно переиздававшегося; Н.И.Пирогов, который с 1840 г. ввел курс вскрытия трупов в Медико-хирургической академии; М.М.Руднев (1837-1878) — основатель петербургской школы патологоанатомов и другие.
В середине XIX века в российской патологии сформировалось экспериментальное направление (получившее позднее название "патологическая физиология "). Впервые курс общей и экспериментальной патологии в России читал в Московском университете известный патологоанатом А.И.Полунин.
Рождение патологической физиологии как науки связано с деятельностью Виктора Васильевича Пашутина (1845-1901) — основоположника первой отечественной школы патофизиологов. В 1874 г. он кардинально переработал курс обшей патологии в Казанском университете, придав ему экспериментальнофизиологическую направленность, а в 1879 г. возглавил кафедру общей и экспериментальной патологии в Военно-медицинской академии в Петербурге, начальником которой он был в 1890-1901 гг.
Будучи учеником И.М.Сеченова и С.П.Боткина, В.В.Пашутин ввел в общую патологию идеи нервизма. Ему принадлежат фундаментальные исследования по обмену веществ (учение об авитаминозе) и газообмену (учение о гипоксии), пищеварению и деятельности желез внутренней секреции. В.В.Пашутин впервые определил патологическую физиологию как "философию медицины". Его двухтомное руководство "Лекции по общей патологии (патологической физиологии)" (1878, 1891) долгое время оставалось основным учебником по патологической физиологии.
В конце XIX — начале XX в. большой вклад в развитие патологической физиологии внесли И.И.Мечников Г.П.Сахаров, А.А.Богомолец.
Связь общей патологии с медицинской практикой
Г. И. Мчедлишвили. Институт физиологии Академии наук Грузинской ССР, Тбилиси. В настоящее время, когда происходит научно-техническая революция и также более нарастают темпы развития науки и внедрения ее результатов в практику, ученым важно осознать, какое место занимают фундаментальные и прикладные науки в сознательной деятельности человека, каковы их особенности и взаимоотношения с практикой. Однако, к сожалению, эти общие вопросы обсуждаются сравнительно редко. В представленных здесь соображениях имеется, возможно, немало спорного, и мнения разных ученых могут отличаться и даже быть противоположными. Но это, разумеется, не может стать причиной того, чтобы не ставить эти вопросы и не пытаться их решать.
Понятие «фундаментальная» наука, или «фундаментальные» исследования (для биологии и медицины), подразумевает прежде всего, что их целью является выяснение фундаментальных, т. е. основополагающих закономерностей деятельности живого организма, которые могут быть не только общебиологическими (нормальными), но и общепотологическими. Фундаментальная наука изучает механизмы явлений, в том числе возможные взаимоотношения отдельных факторов, определяющих течение процессов в организме. Наряду с фундаментальными в последнее время широкое распространение получили прикладные исследования (например, клиническая физиология, клиническая биохимия и др.). При этом используются установленные фундаментальной наукой закономерности для того, чтобы решить, в какой мере они приложили к организму человека, чтобы найти пути их использования в медицинской практике, в частности, выработать диагностические приемы, разработать методы лечения ж др.
Некоторые биологи неправильно считают, что изучение патологических процессов — это сфера лишь прикладной науки. В действительности общие закономерности патологических процессов представляют собой один из видов общебиологических закономерностей и поэтому являются предметом фундаментальной науки. При этом естественно, что фундаментальные исследования в области патологии иногда тесно связаны с прикладной наукой и постоянно обогащают ее новыми идеями и знаниями.
Как известно, при каждом патологическом процессе в организме неизбежно возникают, с одной стороны, чисто патологические явления, т е. нарушения нормальной структуры и функции, а с другой — компенсаторные процессы, представляющие собой проявление деятельности нормальных регуляторных механизмов. Эти два вида явлений находятся обычно в сложном сочетании и во взаимодействии. Врачу приходится разбираться, какие проявления болезни представляют собой нарушения функций и какие — компенсаторные процессы, так как лечебные мероприятия должны быть подобраны таким образам, чтобы они устраняли патологические процессы и способствовали компенсации нарушенных функций. Только при этом условии успех лечения может быть обеспечен. Впрочем, врач сталкивается иногда с немалыми трудностями, так как компенсаторные процессы имеют нередко дуальное (двойственное) значение, т. о., устраняя одни нарушения, они в то же время способствуют развитию других. Примеров этому множество. Так, гаперпоэз при гипоксиях: оно, несомненно, представляет собой компенсаторное явление, способствующее усиленной вентиляции легких , и поступлению кислорода в кровь, но одновременно из организма удаляется излишне большое количество СО2, причем уменьшается количество бикарбонатов — основной буферной системы, что способствует возникновению ацидоза, вызываемого гипоксией. Однако трудности дифференцировки патологических и компенсаторных явлений в организме только подчеркивают необходимость еще лучшего понимания механизмов физиологических и патологических процессов, выяснение которых и является основным предметом фундаментальных наук — физиологии и общей патологии.
Патологические явления несомненно нельзя изучать в отрыве от физиологических, так как в основе тех и других нередко лежат аналогичные биологические процессы, которые присущи клеточным и субклеточным структурам организма. При патологических явлениях эти процессы возникают либо в иных условиях, либо количественно не соответствуют потребностям организма. Примером может служить хотя бы местное усиление кровотока — артериальная гиперемия, которая, имея аналогичные механизмы развития, может проявляться в трех случаях — в здоровом организме (например, рабочая гиперемия при усиленном функционировании органа), при патологии — в виде компенсаторного признака (например, артериальная гиперемия, сопровождающая воспалительный процесс) и, наконец, она может представлять собой чисто патологическое явление например, при вазомоторных расстройствах во (время эритралгии на ладонях рук у человека). При изучении патологических процессов общая патология выясняет закономерности изменений как структуры, так и функций в организме. Если раньше различали чисто функциональную Патологию, при которой никаких структурных изменений в организме обнаружить не удавалось, то теперь благодаря успехам цитохимии и особенно электронной микроскопии структурные изменения могут быть выявлены буквально 'при любых функциональных нарушениях (так 5ке, как при нормальном функционировании тканей). Поэтому если говорить о чисто функциональных патологических процессах, то это совсем не означает полного отсутствия структурных изменений, а имеется лишь в виду, что эти последние легко обратимы.
Структура и функция в организме нераздельны, поэтому, естественно, теряет смысл дискуссия о том, являются ли структурные или функциональные изменения более важными для патологии. Следует лишь помнить, что болезнь ость прежде всего проявление измененной функции, так как если в организме даже весьма значительные структурные изменения компенсированы полностью (например, при тромбозе сонных артерий вследствие коллатерального притока крови кровоснабжение головного мозга может оставаться нормальным), то болезни в сущности нет, человек может даже не подозревать, что в его организме имеются патологические изменения. Далее, величина структурных изменении не всегда соответствует тяжести болезни. Так, при функциональном спазме мозговых артерий, когда структурные изменения их стенок весьма незначительны и притом полностью обратимы, коллатеральный приток крови может оказаться недостаточным и тогда возникает тяжелая ишемия головного мозга с соответствующими последствиями вплоть до гибели организма.
В области фундаментальных наук основным объектом исследования являются обычно животные. Однако это не только не снижает ценности получаемых результатов, но, наоборот, является необходимым условием для выяснения общебиологических, в том числе общепатологических, закономерностей. Во-первых, для анализа «элементарных процессов» обычно приходится упрощать сложные взаимодействия отдельных составных частей целостного организма, а для этого применяют нередко сложные экспериментальные вмешательства, что, естественно, недопустимо делать на человеке. Во-вторых, для изучения закономерностей процессов живого организма бывает целесообразно использовать животных, относящихся к сравнительно низким уровням филогенетического развития, так как общие закономерности отдельных процессов у них нередко аналогичны таковым у высокоразвитых животных и человека, но в то же время взаимоотношения процессов в их организме, не столь сложны it поэтому значительно легче изучать их механизмы. Что же касается прикладных клинических наук, то, естественно, основным объектом исследований должен быть человек. Используются также экспериментальные животные, причем желательно, чтобы они были эволюционно по возможности близки к человеку. Поэтому для экспериментов в этих случаях все чаще используются обезьяны
Методы исследования в биомедицинских науках чрезвычайно разнообразны. При этом фундаментальные и прикладные науки, так же как и практическая медицина, часто используют аналогичные методы. По мере развития науки ее методы исследования обнаруживают свои закономерности, так что в современных условиях имеют (место следующие тенденции:
1.Значительным преимуществом обладают «прямые» методы, позволяющие выявлять именно те процессы и их параметры, которые являются предметом изучения (например, измерения кровотока как такового, а не оценка его изменения на основании электрического сопротивления тканей и др.). Стремление ученых и работников практической медицины использовать прямые методы исследования вполне оправдано, так как получаемые три этом данные всегда более убедительны, чем при использовании методов, дающих косвенные результаты и позволяющих лишь предполагать, что изучаемый параметр изменился именно таким-то образом. «Косвенные», методы особенно малонадежны в случаях исследования живого организма (в отличие от неживой природы), так как в этих случаях из-за участия многочисленных и сложно взаимодействующих факторов механизмы процессов особенно трудно поддаются анализу.
2. В биологической и медицинских пауках вес более ощущается необходимость получения количественных данных, так как только они дают возможность правильной оценки изучаемых явлений и во многих случаях представляют собой обязательное условие для выяснения их взаимоотношений. Вместо с тем количественные данные являются необходимой основой для использования в биологических и медицинских исследованиях вычислительной техники, которая, как известно, при' обретает все большее значение в области как фундаментальных и прикладных наук, так и практической медицины. В отличие от этого «качественные» (в смысле неколичественные) данные обычно (недостаточны для анализа биологических явлений в главное для правильной оценки их роли в тех или иных процессах живого организма.
3. В связи с большими скоростями протекания многих процессов в живом организме,и особенно из-за их сложного взаимодействия весьма важно, чтобы используемые методы позволяли регистрировать изучаемые параметры в динамике, а не дискретно. В последнем случае необнаруженными могут оказаться быстропротекающие изменения, играющие нередко весьма существенную роль в физиологических и патологических явлениях.
4. Методы, используемые в биологических исследованиях и медицинской практике, должны быть по возможности атравматичными. Это важно, с одной стороны, с чисто этической и психологической точки зрения, т. е. стремления не наносить человеку или экспериментальному животному боли и вреда, с другой — травма и вызываемые ею болевые ощущения могут менять естественно протекающие процессы и таким образом мешать их изучению. Вопрос об атравматичности методов в. биологических и медицинских исследованиях становится все более актуальным, так как при все более глубоких исследованиях степень травмагичности методов нередко возрастает.
Если говорить об особенностях методов исследования в фундаментальных и прикладных науках, а также о практической медицине, то они, по-видимому, заключаются лишь в следующем.
В практической медицине надо использовать прежде всего хорошо апробированные методы, для которых известна степень точности, надежности и специфичности, границы приложимости и возможные ошибки. (Прикладные науки играют решающую роль при отработке таких методов — на определенном этапе они используются на экспериментальных животных, а затем, после апробации, в клинике. Что же касается фундаментальных наук, то иногда целесообразное применять новые методы, отрабатывая и апробируя их в процессе работы, так как именно новые методы и подходы позволяют успешно изучать не известные ранее процессы, выяснять ранее не изученные механизмы и устанавливать прежде не выясненные закономерности. Используемые нередко в фундаментальных исследованиях искусственные условия существования живых объектов (разумеется, если это делается правильно) не только не является препятствием, а, наоборот, представляет собой необходимое условие для успешного изучения механизмов, а следовательно, и для установления общебиологических и, в частности, общепатологических закономерностей. При этом фундаментальная наука производит свои исследования на моделях, которые могут быть либо биологическими (в случае использования экспериментальных животных), либо физическими (на искусственно созданных макетах биологических явлений), либо, наконец, математическими, в которых биологические процессы описываются па математическом языке. Вполне естественно, что в последних двух случаях 'полученные данные должны быть проверены на живом организме, чтобы убедиться, что они отражают действительные механизмы закономерности.
В современных условиях все более глубокого изучения процессов живого организма происходит процесс дифференциации внутри каждой отрасли биологической и медицинской наук. Одновременно имеет место и другая тенденция: в фундаментальные биомедицинские исследования все чаще включаются представители точных наук — физики, химики, математики и др., причем исследования носят комплексный характер. Такие взаимно противоположные тенденции в современной фундаментальной науке, как дифференциация и интеграция, являются необходимым условием для все более глубокого изучения механизмов биологических процессов их понимание следует доводить до молекулярного уровня. Это и позволяет фундаментальной науке иметь выход не только в медицинскую практику, но и в разные отрасли техники. При этом возникла и все больше развивается новая наука — бионика, используются данные биологии для разных отраслей техники.
Полная концентрация внимания исследователей, работающих в области фундаментальной науки на изучении механизмов и выявлении общих закономерностей тех или иных физиологических и патологических процессов, неизбежно приводит к их «размежеванию» от работников практической медицины, для которых наиболее важными являются практические вопросы.
В связи с этим неизбежно возникает вопрос, насколько вообще совместима в одном исследователе работа в области фундаментальной и прикладной науки или медицинской практики и насколько такое совмещение вообще целесообразно. Трудность такого совмещения обусловлена значительной спецификой работы в каждой из этих областей и связанными с этими особенностями мышления специалистов. Исследователь, работающий в области фундаментальной науки, должен быть в тесном контакте с работниками прикладных наук, особенно когда на основании его многолетней деятельности наметилась возможность практического использования полученных им данных. Работник в области прикладных наук в свою очередь должен быть хорошо осведомлен о фундаментальных исследованиях и уметь пользоваться достижениями прикладных наук. Вопрос о возможности дальнейшего практического использования результатов фундаментальных исследований, несомненно, имеет первостепенную важность. Однако не менее существенным для фундаментальной науки представляется вопрос о возможности разрешения актуальных в настоящее время проблем. С точки зрения фундаментальной науки (в отличие от практики) вопрос об актуальности исследований определяется, в частности, возможностью решения тех или иных вопросов при современных условиях, что в свою очередь зависит от общего уровня знаний и степени совершенства методов исследования.
От «века просвещения» - к веку науки. Клиническая медицина России и других стран Европы (XVIII-XIX вв)
Наверное, не будет ошибкой сказать, что клиническая медицина вообще и хирургия в частности имеют очень долгое прошлое и весьма краткую историю. В самом деле, возьмем, например, хирургию — старейшую медицинскую специальность. Считается, что первый труд по хирургии появился в Древнем Египте еще во второй половине III тысячелетия до нашей эры (его в 1862 г. нашел английский археолог Эллиот Смит). Но подлинную историю хирургии следует, очевидно, начинать с Амбруаза Парэ (XVI в.), а еще вернее — с XVIII в., когда хирургия, как и клиническая медицина, только-только начала становиться наукой.
... - учение о механизмах поддержания здоровья и выздоровления при болезни. Наряду с собственно патологическими изменениями и меха- низмами патологического развития, что составляет патогенез, патофизиология изучает механизмы предотвращения возникновения и развития патологического процесса, механизмы его ликвида- ции, компенсации и восстановления нарушенных функций и выздо- ровления, ...
... мм рт. ст., пульс 72 удара в минуту, t0C 36,5. Предварительный диагноз (на основании жалоб, истории настоящего заболевания, истории жизни и данных объективного исследования). Облитерирующий атеросклероз сосудов нижних конечностей. II стадия. Ишемическая болезнь сердца, постинфарктный кардиосклероз. Хроническая сердечная недостаточность. План обследования. · Опрос и общий и ...
СТВО ЗДPАВООХPАНЕНИЯ И МЕДИЦИНСКОЙ ПPОМЫШЛЕННОСТИ PСФСР НОВОСИБИPСКИЙ МЕДИЦИНСКИЙ ИНСТИТУТ ПАТОФИЗИОЛОГИЯ ЛИМФАТИЧЕСКОЙ СИСТЕМЫ Новосибирск, 1996 г. . В монографии обобщены собственные данные, а также ре- зультаты исследований проводимых в институте эксперименталь- ной и клинической лимфологии СО РАМН, а также данные обте- чественных и зарубежных ...
... , инсулина, его антагонистов, а также регуляции обмена веществ организма отражает по существу историю биологии и медицины. 2Сахарный диабет 0 представляет собой хроническое нарушение всех видов обмена веществ (преимущественно углеводного), обусловленное абсолютной или относительной инсулиновой недостаточностью и характеризующееся стойкой гипергликемией. Сахарным диабетом страдают около 2% всего ...
0 комментариев