1. отыскание математической формулы, которая выражала бы зависимость y от x

2. измерение тесноты такой зависимости

Решение 1 задачи осуществляется в регрессионном анализе и нахождении уравнения регрессии (уравнение связи)

Параметры для всех уравнений связи определяют из системы нормальных уравнений, отвечающих требованию метода наименьших квадратов

Система нормальных уравнений при линейной зависимости


а0 – параметр, выражающий суммарное влияние всех неучтенных факторов

а1 – коэффициент выражающий усредненное влияние фактора х на результат у

Если связь выражена параболой второго порядка , то система нормальных уравнений для отыскания параметров а0, а1 и а2 выражается следующим образом

Измерение тесноты связи для всех форм связи может быть решена с помощью исчисления теоретического корреляционного отношения (ŋ)

Где  - факторная дисперсия

 - дисперсия фактического значения признака

 - средний квадрат отклонений расчетных значений результативного признака от средней фактической результативного признака. Т.к. 2 отражает вариацию в ряду только за счет вариации фактора х, а дисперсия 2 отражает вариацию у за счет факторов то их отношение, именуемое теоретическим коэффициентом детерминации, показывает какой удельный вес в общей дисперсии ряда у занимает дисперсия, вызываемая вариацией фактора х. Квадратный корень из отношения этих дисперсий дает нам теоретическое корреляционное отношение.

Если 2=2 то это означает, что роль других факторов в вариации сведена на нет. И отношение , означает полную зависимость вариации у от х.

Если 2=0, значит вариация х никак не влияет на вариацию у и ŋ=0

Т.о. корреляционное отношение может быть от 0 до 1.

В случае линейной зависимости

 - линейный коэффициент корреляции

В случае небольшого числа наблюдений n очень важно оценить надежность (значимость) коэффициента корреляции. Для этого определяют среднюю ошибку коэффициента корреляции по следующей формуле:

Где n-2 – число степеней свободы при линейной зависимости, затем находят отношение коэффициента корреляции к его средней ошибке

, которое сравнивается с табличным значением t-критерия Стьюдента. Если t фактического (расчетное) больше t табличного, то линейный коэффициент корреляции r считается значимым, а связь м/у х и у реальной.

 


Задача № 2

По данным таблицы произведите группировку предприятий по численности работающих, укажите к какому виду группировок принадлежит данная группировка, подсчитайте по каждой группе объем выпуска продукции и численность работающих, на графике покажите зависимость между численностью работающих и объемом выпуска продукции.

Таблица

№ пред- приятия Выпуск продукции млн.р. Численность работающих чел. № пред-приятия Выпуск продукции млн.р. Численность работающих чел.
1 52,5 230 13 58,9 270
2 62,3 350 14 62,3 360
3 45,4 150 15 68,9 390
4 72,1 420 16 54,1 250
5 85,6 520 17 58,2 265
6 87,1 570 18 47,5 185
7 98,2 690 19 49,8 200
8 50,0 200 20 72,1 425
9 56,3 245 21 80,2 510
10 102,2 800 22 86,9 555
11 87,3 505 23 93,5 650
12 47,4 170 24 58,1 260
25 97,1 685

Решение.

Ряд распределения является простейшей группировкой и представляет собой упорядоченное распределение единиц изучаемой совокупности по значению варьирующего признака. Вариант ряда распределения – это отдельные числовые значения количественного признака. Частота – численности отдельных вариантов, их сумма называется объемом совокупности. Ряд распределения, построенный на основе качественного признака называется атрибутивным, а на основе количественного – вариационным. Также различают дискретный вариационный ряд распределения, выражаемый одним целым числом; и интервальный вариационный ряд, в котором признак принимает различные значения в пределах интервала.

При построении вариационного ряда распределения определяют оптимальное количество групп (n) и величину интервала, в пределах которой изменяется вариационный признак (h). Оптимальное количество групп находится по формуле Стерджесса:

n=1+3,322*lgN,

где N – количество единиц совокупности.

Также можно воспользоваться следующей таблицей.

N 15-24 25-44 45-89 90-179 180-359 360-719
n 5 6 7 8 9 10

Величина равного интервала определяется по формуле:

,

где и - максимальное и минимальное значение признака.

N=25 – количество предприятий

n=6 – количество групп

h=(xmax-xmin)/n; xmax=800, xmin=150

h=(800-150)/6=108.3 – интервал

Группировка предприятий по численности работающих



группы

Группы предприятий по численности работающих, чел. Число предприятий Общая численность работающих, чел. Выпущенная продукция, млн. руб.
1 150 – 258 8 1630 403,2
2 258 – 367 5 1505 299,8
3 367 – 475 3 1235 213,1
4 475 – 583 5 2660 427,1
5 583 – 692 3 2025 288,8
6 692 - 800 1 800 102,2
Итого 25 9855 1734,2

Групповая зависимость между численностью работающих и объемом выпуска продукции

Задача 15

 

В таблице приведены выборочные данные по предприятиям одной из отраслей Дальнего Востока:

№ предприятия Выпуск продукции, млн. р., y Численность работающих, чел., x
1 52,5 230
2 62,3 350
3 45,4 150
4 72,1 420
5 85,6 520
6 87,1 570
7 98,2 690
8 50,0 200

Определите:

1. Зависимость и уравнение связи выпуска продукции от размера численности работников предприятия.

2. Тесноту связи между размером выпуска продукции и численностью работающих.

3. Теоретическое значение выпуска продукции, если численность работающих будет равно 610 человек.

Решение

Задачами корреляционного анализа является измерение тесноты корреляционной связи, оценка факторов, наиболее влияющих на результативный признак.

Задачами регрессионного анализа является выбор типа модели связи, определение функции регрессии. В зависимости от количества факторов модели связи могут быть однофакторные и многофакторные. Наиболее разработанной в статистике является методология так называемой парной корреляции, рассматривающей влияние вариации факторного признака (х) на результативный признак (у) и представляющая собой однофакторный корреляционный и регрессивный анализ. Если результативный признак с увеличением факторного признака равномерно возрастает или убывает, то такая зависимость называется линейной и выражается уравнением прямой.

Уравнение однофакторной парной линейной корреляционной связи имеет вид:

,

где у - теоретические значения результативного признака; - коэффициенты уравнения регрессии; х - значения факторного признака.

Параметры уравнения прямой находятся путем решения системы нормальных уравнений, полученных методом наименьших квадратов или по следующим формулам:

, .

Линейный коэффициент корреляции показывает тесноту корреляционной связи только при линейной форме связи и выражается следующей формулой:

,

или же следующей формулой:

.

Чем более линейный коэффициент корреляции r близок к единице, тем более тесная связь между признаками. При r, равном –1, связь между признаками обратная, а при r равном нулю связь между признаками отсутствует.


Информация о работе «Взаимосвязь показателей деятельности предприятия»
Раздел: Экономика
Количество знаков с пробелами: 24734
Количество таблиц: 10
Количество изображений: 3

Похожие работы

Скачать
40977
11
2

... для формирования групп аналогов оцениваемой продукции. В оценке качества эти показатели, как правило, не участвуют. Оценочные показатели количественно характеризуют те свойства, которые образуют качество продукции как объекта производства и потребления или эксплуатации. Они используются для нормирования требований к качеству, оценки технического уровня при разработке стандартов, проверки качества ...

Скачать
46595
5
1

... в том, чтобы наилучшим образом и наиболее полно на научной основе удовлетворить потребности людей в продуктах питания, заменить домашнее приготовление пищи общественным. 1.2 Показатели деятельности предприятий общественного питания, их экономическая характеристика Финансовое состояние – комплексное понятие, которое характеризуется системой показателей, отражающих наличие, размещение и ...

Скачать
116028
26
0

... к балансу, т.е. как документ, в котором раскрывается приведенный в балансе показатель чистой прибыли, полученной предприятием за истекший отчетный период.[22,с.222] 1.2 Задачи и методы анализа финансовых показателей Анализ финансовых показателей деятельности предприятия является необходимым элементом в системе функций управления предприятием, поскольку без него не могут реализоваться и ...

Скачать
54262
17
0

... и технике безопасности 9 Благоустройство территории комбината Реконструировать уличное помещение, асфальтировать территорию вокруг комбината, провести работы по озеленению комбината и прилегающей территории   Глава 2. Финансовые показатели деятельности предприятия и их оценка   2.1. Экономическая сущность, цель и значение финансового анализа Финансовый анализ в своем традиционном ...

0 комментариев


Наверх