1. Найдем центрированную матрицу
, где Х матрица исходных данных размерности 53*6
Найдем оценку вектора , т.е.
где , где n = 53 – объем выборки.
Используя пакет STADIA (Раздел описательная статистика), получаем вектор :
Согласно приведенной формуле рассчитываем центрированную матрицу (Приложение 2)
2. Рассчитываем матрицу
Используя пакет STADIA (меню преобразований), получаем:
=
Оценку ковариационной матрицы получим путем умножения матрицы на множитель
Обозначим оценку ковариационной матрицы S, используя пакет MathCad находим:
оценка ковариационной матрицы.
Для расчета ковариационной матрицы воспользуемся формулой (1) и определением ковариационной матрицы (2), получаем следующую оценку корреляционной матрицы:
Данный расчет можно провести на прямую, используя пакет STADIA, но наша цель бала показать весь процесс расчета корреляционной матрицы. Проанализируем корреляционную матрицу.
1 – я строка и 1 – столбец это признак у , как видим наибольшая связь наблюдается между признаками х7 и х14 очень тесная (-0,938) , если анализировать парную связь между факторными признаками, то можно заметить наибольшую связь между признаком х5 и х17 (-0,938).
Устранение мультиколлинеарности с помощью метода пошаговой регрессии
Устраним мультиколлинеарность методом пошаговой регрессии,
который предполагает, что на каждом шаге мы будем включать в уравнение регрессии тот признак, который будет вызывать наибольшее приращение коэффициента детерминации.
Шаг 1
Строим уравнения регрессии
Находим максимальный коэффициент детерминации (где k=1)
Вычисляем нижнюю границу коэффициента детерминации достигнет своего максимума.
Используя пакет STADIA определяем:
Переменная | | | k |
X17 | 0.191 | 0.7117 | 1 |
Шаг 2
Строим уравнения регрессии
Находим максимальный коэффициент детерминации (где k=1)
Вычисляем нижнюю границу коэффициента детерминации достигнет своего максимума.
Используя пакет STADIA определяем:
Переменная | | | k |
X7 | 0.7618 | 0.7117 | 1 |
Х7,Х9 | 0.8118 | 0.750 | 2 |
Шаг 3
Строим уравнения регрессии
Находим максимальный коэффициент детерминации (где k=1)
Вычисляем нижнюю границу коэффициента детерминации достигнет своего максимума.
Используя пакет STADIA определяем:
Переменная | | | k |
X7 | 0.7618 | 0.7117 | 1 |
Х7,Х9 | 0.8118 | 0.750 | 2 |
Х7,Х9,X3 | 0.80953 | 0.735 | 3 |
Процесс прекращаем поскольку, меньше таких коэффициентов для уравнений регрессии с двумя переменными.
Подробный анализ, выполненный с помощью программы “Stadia”, приведен в Приложении 1.
Граф.1
Подробные расчеты см. Приложение 1
Таким образом , из анализа исключаются все факторные признаки,
кроме Х7,X9
2. Проверить построенную модель на гетероскедастичность. Построить обобщенную модель множественной регрессии (случай гетероскедастичности остатков)
1.4 Построение и исследование новой модели регрессии.
1.4.1 Вычисление оценок коэффициентов регрессии
Регрессионная модель примет вид:
Вывод т.к. около 1, то можно считать , что связь тесная.
Проверка значимости и построение доверительных интервалов для коэффициентов регрессии
Проверим значимость уравнения регрессии:
H0:<регрессионная модель незначима>
H1:<регрессионная модель значима>
Fвычисленное=57.1
Fкритическое (0,05;2;24)=3,40 так как Fвычисленное >Fкритическое ,
то принимается гипотеза Н1 , следовательно в уравнении коэффициенты регрессии должны быть значимыми.
Проверим значимость коэффициентов регрессии
tкритическое =2.064
tвычисленное = .
коэффициент значим.
коэффициент значим
.
коэффициенты значимы, поскольку> tкритическое =2.064,
<tкритическое ,
Построим доверительный интервал для коэффициентов по формуле:
где остаточная дисперсия
Используя пакет STADIA находим доверительный интервал для коэффициента при переменной Х7,Х9.
... быстро выполняемой счетной операцией. Данная работа посвящена изучению возможности обработки статистических данных биржевых ставок методами корреляционного и регрессионного анализа с использованием пакета прикладных программ Microsoft Excel. Роль корреляцонно-регрессионного анализа в обработке экономических данных Корреляционный анализ и регрессионный анализ являются смежными разделами ...
... группы, установление связи и ее направление. Индексный метод является гибким аналитическим инструментом и может применяться в анализе показателе производственной, финансовой, инвестиционной и других видах деятельности предприятия (фирмы). Корреляционный и регрессионный анализ являются довольно сложной операцией. Исходными предпосылками для их проведения являются: случайный характер факторов, ...
... очередь, для обеспечения последовательного режима правильной постановкой задачи и наиболее подходящей выборкой из имеющихся данных. Исследователь, применяющий корреляционно-регрессионный анализ, отбирает наиболее адекватные и представительные территории, периоды времени, объекты исследования, виды факторов и т.д. Аналитический режим имеет заданный "вход" - исходную постановку задачи и выборку из ...
... ŷ = a0 + a1x , где ŷ - теоретические значения результативного признака, полученные по уравнению регрессии; a0 , a1 - коэффициенты (параметры) уравнения регрессии. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования ...
0 комментариев