1.4.2 Построение доверительного интервала для результативного признака

* Доверительный интервал для результативного признака будем строить , исходя из формулы:

* ,

где t-значение статистики Стьюдента при и

степенях свободы.

Построим доверительный интервал прогноза в точке , используя пакет STADIA ,находим:

2.   Исследование модели на наличие гетероскедастичности

Критерий ранговой корреляции Спирмена. По выборочным данным строим регрессионную модель, которую оцениваем с помощью МНК. Вычисляем регрессионные остатки: еiii. Данные объясняющих переменных и остатки ранжируют, после чего исследуют зависимость между хi и εi. Для этого выдвигаем гипотезу Нo: нет зависимости между объясняющей переменной и регрессионными остатками ( она равносильна гипотезе о том, что нет явления гетероскедастичности), Нı: есть зависимость, т.е. явление гетероскедастичности наблюдается. Для проверки гипотезы строится статистика, распределенная нормально с математическим ожиданием равным нулю и дисперсией равной 1: t=Rх.е ,

где Rx,e=1-6* -коэффициент ранговой корреляции Спирмена, где Di2= rang xi- rang ei .

На заданном уровне значимости α=0.05 по таблице нормального распределения находим tкр

Если tн>t, то нулевую гипотезу отвергаем, значит есть явления гетероскеластичности, в противном случае явление гетероскедастичности наблюдаем. В случае наличия гетероскедастичности, используя ОМНК оценим

регрессию, взяв в качестве матрицы Ω=

Проверим наличие гетероскедастичности по переменной Х7

rang xi

rang ei

Di

Di2

21.3

69.2

77.9

17.1

18.4

37.9

72.2

27.5

58.2

46.2

74

43.5

18.8

59.5

52.2

65.1

60.2

2.63

84

19.8

78.7

62

104

69.3

78.9

15.1

51.5

84.98

30.58

38.42

60.34

60.22

60.79

29.82

70.57

34.51

64.73

36.63

32.84

62.64

34.07

39.27

28.46

30.27

69.04

25.42

53.13

28.00

38.79

32.04

38.58

18.51

57.62

20.80

-0.917

2.18

0.808

-5

-7.52

-17.5

7.55

-10.2

11.5

-21.7

2.23

0.909

-7.49

19.7

4.75

-10.3

11.9

10.8

-4.14

-8.63

-6.32

-13.4

-3.89

-5.4

-1.42

19.6

32

2,5

19,5

24

4,5

2,5

8,5

18

8,5

14

11

21

10

7

12,5

12,5

16

19,5

4,5

26

6

22

16

27

23

25

1

16

15

18

16

11

7

2

21

5

23

1

19

17

8

26

20

4

24

22

12

6

9

3

13

10

14

25

27

-15

-18

8

-11

-7

-2

-3

-5

-9

10

2

-7

-1

-26

-20

12

-24

-22

14

0

13

13

14

13

11

-24

-11

225

324

64

121

49

4

9

25

81

100

4

49

1

676

400

144

576

484

196

0

169

169

196

169

121

576

121

Приведем график зависимости регрессионных остатков  от изменения признака Х7.

По оси ординат (У) отражено значение остатков , по оси абсцисс (х) значение признака. Как видно визуально гетероскедастичность отсутствует. Ранговый коэффициент корреляции будет Rx,e= 0,0681, t=Rх.е =-0,3472 0,3472<1.96 , следовательно согласно критерию гетероскедастичность линейного вида отсутствует. Проверим наличие гетероскедастичности по переменной Х9

rang xi

rang ei

Di

Di2

21.3

69.2

77.9

17.1

18.4

37.9

72.2

27.5

58.2

46.2

74

43.5

18.8

59.5

52.2

65.1

60.2

2.63

84

19.8

78.7

62

104

69.3

78.9

15.1

51.5

84.98

30.58

38.42

60.34

60.22

60.79

29.82

70.57

34.51

64.73

36.63

32.84

62.64

34.07

39.27

28.46

30.27

69.04

25.42

53.13

28.00

38.79

32.04

38.58

18.51

57.62

20.80

-0.917

2.18

0.808

-5

-7.52

-17.5

7.55

-10.2

11.5

-21.7

2.23

0.909

-7.49

19.7

4.75

-10.3

11.9

10.8

-4.14

-8.63

-6.32

-13.4

-3.89

-5.4

-1.42

19.6

32

21

10

5

25

22,5

20

2,5

26

11

15

4

16

24

6,5

13

2,5

18

27

6,5

22,5

1

8

14

12

9

17

19

15

18

16

11

7

2

21

5

23

1

19

17

8

26

20

4

24

22

12

6

9

3

13

10

14

25

27

6

-8

-11

14

-7

18

-21

21

-12

14

-15

-1

16

-26

-7

-4

-6

5

-12

-6

-8

5

1

2

-5

-8

-8

36

64

121

196

49

324

441

441

144

196

225

1

256

676

49

16

36

25

144

36

64

25

1

4

25

64

64

Приведем график зависимости регрессионных остатков  от изменения признака Х9.

По оси ординат (У) отражено значение остатков , по оси абсцисс (х) значение признака. Как видно визуально гетероскедастичность отсутствует. Ранговый коэффициент корреляции будет Rx,e= -0,1364, t=Rх.е =-0,6955 0,6955<1.96 , следовательно согласно критерию гетероскедастичность линейного вида отсутствует. 3.   Устранение гетероскедастичности обобщенным методом наименьших квадратов.

Если явление гетероскедастичности наблюдается, то оценки, полученные с помощью МНК, являются смещенными и состоятельными. В этом случае следует использовать ОМНК для построения коэффициентов регрессии: bомнк=(ΧТΩˉ¹X)ˉ¹X ТΩˉ¹Y, где Ω - диагональная матрица, которую необходимо оценить. Тогда оценка регрессии будет иметь вид:Ŷ=Xbомнк. Проверка на значимость уравнения регрессии осуществляется с помощью статистики , распределенной по закону Фишера -Снедокера.

FН= , где QR=(Xb)ТΩ-1(Хb) , Qост=(У-Хb)ТΩ-1(У-Хb)

Проверка на значимость коэффициентов регрессии осуществляется с помощью статистики, распределенной по закону Стьюдента.

tн= , где Sbj=Ŝ [ ( XТΩ-1Х)-1]jj , Ŝ=

Поскольку гетероскедастичности нет ,то нет необходимости применения ОМНК.

4.   Исследование модели на наличие автокорреляции.

На практике можно провести примеры, когда построенная регрессионная модель оказывается значимой, дисперсии оценок этой модели малы, но модель оказывается неадекватной описываемому процессу. Причина этого может быть в наличии явления автокорреляции - это явление, заключающееся в том, что значения случайной составляющей в любом наблюдении зависит от его значений во всех других наблюдениях. Если в этом случае проанализировать поведение остатков, то зачастую можно выявить следующие тенденции:

● значения регрессионных остатков в соседних точках оказываются одного знака. В данном случае имеет место положительная автокорреляция.

● значения регрессионных остатков в соседних точках оказываются разного знака (по закономерности ). В этом случае имеет место отрицательная автокорреляция остатков.

Явление автокорреляции по поведению остатков можно выявить, если достаточна частота наблюдений. Автокорреляция выявляется с помощью статистики Дарбина- Уотсона:

d=

Если наличие автокорреляции отсутствует, то значение статистики должно быть близкой к двум. При наличии положительной автокорреляции величина d близка к нулю (меньше двух); при отрицательной автокорреляции она близка к значению 4. Вычисляют верхнюю и нижнюю границы для критического значения статистики. Возможны три ситуации:

1)   Если d<d, то делаем вывод о наличии автокорреляции;

2)   Если d>d, то нет автокорреляции;

3)   Если d<d<d, то в этом случае мы не можем ни принять ни отклонить нулевую гипотезу и анализ осуществляется с помощью нового критерия: d’=4-d.

В случае наличия автокорреляции ее необходимо устранить, т.к построенные оценки коэффициентов регрессии будут смещенными и состоятельными. В литературе большое внимание уделяется зависимости первого порядка между регрессионными остатками: =+, где <1; -случайные величины, обладающие свойствоми: М=0; D=, cov[,] =0 при ij т.е. относительно  мы имеем линейную регрессионную гомоскедастичную модель. Наша цель- построить ковариационную матрицу вектора регрессионных остатков, найти ее оценку и построить модель ОМНК. Исследуем случайные величины :

 М= М=0

 D=, т.е. дисперсия регрессионных остатков постоянная величина.

 =

Таким образом, указали вид ковариационной матрицы вектора регрессионных остатков. Для оценки коэффициентов регрессии ОМНК необходимо построить матрицу. Используя вид можно указать .

 

На практике величина  неизвестна. Рассмотрим способом оценивания с помощью метода Кокрейна-Оркатта, который представляет собой итерационный подход, включающий следующие этапы:

1.   Оценивается регрессия МНК: У=Х;

2.   Вычисляются остатки e;

3.   Оценивается регрессионная зависимость еот е: е=, коэффициент при е представляет оценку ,

4.   Строится . Используя эту матрицу оцениваем регрессионную зависимость У от Х ОМНК.

5.   Повторно вычисляют епроцесс возвращается к пункту 3.

Процесс заканчивается, когда значения на последнем и предпоследнем этапах будут примерно одинаковыми.

Таким образом указан один из способов построения матрицы , в случае зависимости регрессионных остатков первого порядка. Используя матрицу  можно построить вектор оценок коэффициентов регрессии ОМНК, проверить на значимость уравнение регрессии, построить доверительные интервалы по вышеописанным формулам

Проверим наличие автокорреляции в модели. Составим расчетную таблицу:

0.917 2.18 0.808 -5 -7.52 -17.5 7.55 -10.2 11.5 -21.7 2.23 0.909 -7.49 19.7 4.75 -10.3 11.9 10.8 -4.14 -8.63 -6.32 -13.4 -3.89 -5.4 -1.42 19.6 2.18 0.808 -5 -7.52 -17.5 7.55 -10.2 11.5 -21.7 2.23 0.909 -7.49 19.7 4.75 -10.3 11.9 10.8 -4.14 -8.63 -6.32 -13.4 -3.89 -5.4 -1.42 19.6 32 9,59141 1,88238 33,7329 6,3504 99,6004 627,502 315,063 470,89 1102,24 572,645 1,74504 70,5432 739,296 223,502 226,503 492,84 1,21 223,204 20,1601 5,3361 50,1264 90,4401 2,2801 15,8404 441,84 153,76 0,840889 4,7524 0,652864 25 56,5504 306,25 57,0025 104,04 132,25 470,89 4,9729 0,826281 56,1001 388,09 22,5625 106,09 141,61 116,64 17,1396 74,4769 39,9424 179,56 15,1321 29,16 2,0164 384,16
Посчитаем критерий Дарбина-Уотсона:

d==5998.124/2736.788= 2.191

Поскольку d>2 то альтернатива отсутствию автокорреляции будет существование отрицательной автокорреляции. По таблице находим для n=27, k=2 (число объясняющих переменных) и уровня значимости a=0,05 : d1=1.24 и d2 = 1.56 Т.к.

 4 – d= 1.809 > d2=1.56 следовательно автокорреляции нет.

5.   Устранение автокорреляции 1 – го порядка обобщенным методом наименьших квадратов.

Наша цель- построить ковариационную матрицу вектора регрессионных остатков, найти ее оценку и построить модель ОМНК. Исследуем случайные величины :

 М= М=0

 D=, т.е. дисперсия регрессионных остатков постоянная величина.

 =

Таким образом, указали вид ковариационной матрицы вектора регрессионных остатков. Для оценки коэффициентов регрессии ОМНК необходимо построить матрицу. Используя вид можно указать .

 

На практике величина  неизвестна. Рассмотрим способом оценивания с помощью метода Кокрейна-Оркатта, который представляет собой итерационный подход, включающий следующие этапы:

6.   Оценивается регрессия МНК: У=Х;

7.   Вычисляются остатки e;

8.   Оценивается регрессионная зависимость еот е: е=, коэффициент при е представляет оценку ,

9.   Строится . Используя эту матрицу оцениваем регрессионную зависимость У от Х ОМНК.

10.   Повторно вычисляют епроцесс возвращается к пункту 3.

Процесс заканчивается, когда значения на последнем и предпоследнем этапах будут примерно одинаковыми.

Таким образом указан один из способов построения матрицы , в случае зависимости регрессионных остатков первого порядка. Используя матрицу  можно построить вектор оценок коэффициентов регрессии ОМНК, проверить на значимость уравнение регрессии, построить доверительные интервалы по вышеописанным формулам.

 Поскольку автокорреляции нет, то нет необходимости применения ОМНК.

Приложение 1 Исходные данные *
№ п/п

Y1

X5

X7

X10

X14

X17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

9.26

9.38

12.11

10.81

9.35

9.87

8.17

9.12

5.88

6.30

6.22

5.49

6.50

6.61

4.32

7.37

7.02

8.25

8.15

8.72

6.64

8.10

5.52

9.37

13.17

6.67

6.68

6.22

10.02

8.16

6.78

6.48

10.44

7.65

8.77

7.00

11.06

9.02

13.28

9.27

6.70

6.69

9.42

7.24

5.39

5.61

5.59

6.57

6.54

4.23

5.22

18.00

11.03

0.78

0.75

0.68

0.70

0.62

0.76

0.73

0.71

0.69

0.73

0.68

0.74

0.66

0.72

0.68

0.77

0.78

0.78

0.81

0.79

0.77

0.78

0.72

0.79

0.77

0.80

0.71

0.79

0.76

0.78

0.62

0.75

0.71

0.74

0.65

0.66

0.84

0.74

0.75

0.75

0.79

0.72

0.70

0.66

0.69

0.71

0.73

0.65

0.82

0.80

0.83

0.70

0.74

1.37

1.49

1.44

1.42

1.35

1.39

1.16

1.27

1.16

1.25

1.13

1.10

1.15

1.23

1.39

1.38

1.35

1.42

1.37

1.41

1.35

1.48

1.24

1.40

1.45

1.40

1.28

1.33

1.22

1.28

1.47

1.27

1.51

1.46

1.27

1.43

1.50

1.35

1.41

1.47

1.35

1.40

1.20

1.15

1.09

1.26

1.36

1.15

1.87

1.17

1.61

1.34

1.22

1.45

1.30

1.37

1.65

1.91

1.68

1.94

1.89

1.94

2.06

1.96

1.02

1.85

0.88

0.62

1.09

1.60

1.53

1.40

2.22

1.32

1.48

0.68

2.30

1.37

1.51

1.43

1.82

2.62

1.75

1.54

2.25

1.07

1.44

1.40

1.31

1.12

1.16

0.88

1.07

1.24

1.49

2.03

1.84

1.22

1.72

1.75

1.46

1.60

1.47

1.38

1.41

1.39

6.40

7.80

9.76

7.90

5.35

9.90

4.50

4.88

3.46

3.60

3.56

5.65

4.28

8.85

8.52

7.19

4.82

5.46

6.20

4.25

5.38

5.88

9.27

4.36

10.31

4.69

4.16

3.13

4.02

5.23

2.74

3.10

10.44

5.65

6.67

5.91

11.99

8.30

1.63

8.94

5.82

4.80

5.01

4.12

5.10

3.49

4.19

5.01

11.44

7.67

4.66

4.30

6.62

47750

50391

43149

41089

14257

22661

52509

14903

25587

16821

19459

12973

50907

6920

5736

26705

20068

11487

32029

18946

28025

20968

11049

45893

99400

20719

36813

33956

17016

34873

11237

17306

39250

19074

18452

17500

7888

58947

94697

29626

11688

21955

12243

20193

20122

7612

27404

39648

43799

6235

11524

17309

22225


- А.М. Дубров и др. , Многомерные статистические методы М.: Финансы и статистика, 1998 г. – с.320 – 323.

Приложение 2.

Центрированная матрица
№ п/п

Y1 цен

X5 цен

X7 цен

X10 цен

X14 цен

X17 цен

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

424344454647484950515253

1,2

1,32

4,05

2,75

1,29

1,81

0,11

1,06

-2,18

-1,76

-1,84

-2,57

-1,56

-1,45

-3,74

-0,69

-1,04

0,19

0,09

0,66

-1,42

0,04

-2,54

1,31

5,11

-1,39

-1,38

-1,84

1,96

0,1

-1,28

-1,58

2,38

-0,41

0,71

-1,06

3

0,96

5,22

1,21

-1,36

-1,37

1,36

-0,82

-2,67

-2,45

-2,47

-1,49

-1,52

-3,83

-2,84

9,94

2,97

0,045

0,015

-0,055

-0,035

-0,115

0,025

-0,005

-0,025

-0,045

-0,005

-0,055

0,005

-0,075

-0,015

-0,055

0,035

0,045

0,045

0,075

0,055

0,035

0,045

-0,015

0,055

0,035

0,065

-0,025

0,055

0,025

0,045

-0,115

0,015

-0,025

0,005

-0,085

-0,075

0,105

0,005

0,015

0,015

0,055

-0,015

-0,035

-0,075

-0,045

-0,025

-0,005

-0,085

0,085

0,065

0,095

-0,035

0,005

0,03

0,15

0,1

0,08

0,01

0,05

-0,18

-0,07

-0,18

-0,09

-0,21

-0,24

-0,19

-0,11

0,05

0,04

0,01

0,08

0,03

0,07

0,01

0,14

-0,1

0,06

0,11

0,06

-0,06

-0,01

-0,12

-0,06

0,13

-0,07

0,17

0,12

-0,07

0,09

0,16

0,01

0,07

0,13

0,01

0,06

-0,14

-0,19

-0,25

-0,08

0,02

-0,19

0,53

-0,17

0,27

0

-0,12

-0,08

-0,23

-0,16

0,12

0,38

0,15

0,41

0,36

0,41

0,53

0,43

-0,51

0,32

-0,65

-0,91

-0,44

0,07

0

-0,13

0,69

-0,21

-0,05

-0,85

0,77

-0,16

-0,02

-0,1

0,29

1,09

0,22

0,01

0,72

-0,46

-0,09

-0,13

-0,22

-0,41

-0,37

-0,65

-0,46

-0,29

-0,04

0,5

0,31

-0,31

0,19

0,22

-0,07

0,07

-0,06

-0,15

-0,12

-0,14

0,43

1,83

3,79

1,93

-0,62

3,93

-1,47

-1,09

-2,51

-2,37

-2,41

-0,32

-1,69

2,88

2,55

1,22

-1,15

-0,51

0,23

-1,72

-0,59

-0,09

3,3

-1,61

4,34

-1,28

-1,81

-2,84

-1,95

-0,74

-3,23

-2,87

4,47

-0,32

0,7

-0,06

6,02

2,33

-4,34

2,97

-0,15

-1,17

-0,96

-1,85

-0,87

-2,48

-1,78

-0,96

5,47

1,7

-1,31

-1,67

0,65

-1,78

-1,11

6,96

2,87

8,63

-1,95

2,42

0,02

4,49

2,26

6,18

-1,37

6,24

1,71

3,29

-3,12

-6,29

-5,02

-6,12

-5,81

-2,84

-4,44

0,5

-3,52

-1,23

-5,08

3,26

-4,09

-5,15

-2,67

11,03

-1,52

2,59

-1,21

6,55

6,7

-2,24

-0,67

0,2

-2,63

-4,87

2,67

3,12

6,94

2,76

-0,37

-1,22

8,73

-7,11

-7,86

-10,88

0,6

-0,09

Приложение 1 Исходные данные *
№ п/п

Y3

X8

X10

X15

X16

X17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

13.26

10.16

13.72

12.85

10.63

9.12

25.83

23.39

14.68

10.05

13.99

9.68

10.03

9.13

5.37

9.86

12.62

5.02

21.18

25.17

19.40

21.0

6.57

14.19

15.81

5.23

7.99

17.50

17.16

14.54

6.24

12.08

9.49

9.28

11.42

10.031

8.65

10.94

9.87

6.14

12.93

9.78

13.22

17.29

7.11

22.49

12.14

15.25

31.34

11.56

30.14

19.71

23.56

1.23

1.04

1.80

0.43

0.88

0.57

1.72

1.70

0.84

0.60

0.82

0.84

0.67

1.04

0.66

0.86

0.79

0.34

1.60

1.46

1.27

1.58

0.68

0.86

1.98

0.33

0.45

0.74

0.03

0.99

0.24

0.57

1.22

0.68

1.00

0.81

1.27

1.14

1.89

0.67

0.96

0.67

0.98

1.16

0.54

1.23

0.78

1.16

4.44

1.06

2.13

1.21

2.20

1.45

1.30

1.37

1.65

1.91

1.68

1.94

1.89

1.94

2.06

1.96

1.02

1.85

0.88

0.62

1.09

1.60

1.53

1.40

2.22

1.32

1.48

0.68

2.30

1.37

1.51

1.43

1.82

2.62

1.75

1.54

2.25

1.07

1.44

1.40

1.31

1.12

1.16

0.88

1.07

1.24

1.49

2.03

1.84

1.22

1.72

1.75

1.46

1.60

1.47

1.38

1.41

1.39

166.32

92.88

158.04

93.96

173.88

162.30

88.56

101.16

166.32

140.76

128.52

177.84

114.48

93.24

126.72

91.80

69.12

66.24

67.68

50.40

70.56

72.00

97.20

80.28

51.48

105.12

128.52

94.68

85.32

76.32

153.00

107.64

90.72

82.44

79.92

120.96

84.60

85.32

101.52

107.64

85.32

131.76

116.64

138.24

156.96

137.52

135.72

155.52

48.60

42.84

142.20

145.80

120.52

10.08

14.76

6.48

21.96

11.88

12.60

11.52

8.28

11.52

32.40

11.52

17.28

16.20

13.32

17.28

9.72

16.20

24.84

14.76

7.56

8.64

8.64

9.00

14.76

10.08

14.76

10.44

14.76

20.52

14.40

24.84

11.16

6.48

9.72

3.24

6.48

5.4

6.12

8.64

11.88

7.92

10.08

18.72

13.68

16.56

14.76

7.92

18.36

8.28

14.04

16.92

11.16

14.76

47750

50391

43149

41089

14257

22661

52509

14903

25587

16821

19459

12973

50907

6920

5736

26705

20068

11487

32029

18946

28025

20968

11049

45893

99400

20719

36813

33956

17016

34873

11237

17306

39250

19074

18452

17500

7888

58947

94697

29626

11688

21955

12243

20193

20122

7612

27404

39648

43799

6235

11524

17309

22225


- А.М. Дубров и др. , Многомерные статистические методы М.: Финансы и статистика, 1998 г. – с.320 – 323.

Приложение 2.

Центрированная матрица
№ п/п

Y3 цен

X8 цен

X10 цен

X15 цен

X16 цен

X17 цен

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

-0,44

-3,54

0,02

-0,85

-3,07

-4,58

12,13

9,69

0,98

-3,65

0,29

-4,02

-3,67

-4,57

-8,33

-3,84

-1,08

-8,68

7,48

11,47

5,7

7,3

-7,13

0,49

2,11

-8,47

-5,71

3,8

3,46

0,84

-7,46

-1,62

-4,21

-4,42

-2,28

-3,669

-5,05

-2,76

-3,83

-7,56

-0,77

-3,92

-0,48

3,59

-6,59

8,79

-1,56

1,55

17,64

-2,14

16,44

6,01

9,86

0,16

-0,03

0,73

-0,64

-0,19

-0,5

0,65

0,63

-0,23

-0,47

-0,25

-0,23

-0,4

-0,03

-0,41

-0,21

-0,28

-0,73

0,53

0,39

0,2

0,51

-0,39

-0,21

0,91

-0,74

-0,62

-0,33

-1,04

-0,08

-0,83

-0,5

0,15

-0,39

-0,07

-0,26

0,2

0,07

0,82

-0,4

-0,11

-0,4

-0,09

0,09

-0,53

0,16

-0,29

0,09

3,37

-0,01

1,06

0,14

1,13

-0,08

-0,23

-0,16

0,12

0,38

0,15

0,41

0,36

0,41

0,53

0,43

-0,51

0,32

-0,65

-0,91

-0,44

0,07

0

-0,13

0,69

-0,21

-0,05

-0,85

0,77

-0,16

-0,02

-0,1

0,29

1,09

0,22

0,01

0,72

-0,46

-0,09

-0,13

-0,22

-0,41

-0,37

-0,65

-0,46

-0,29

-0,04

0,5

0,31

-0,31

0,19

0,22

-0,07

0,07

-0,06

-0,15

-0,12

-0,14

57,32

-16,12

49,04

-15,04

64,88

53,3

-20,44

-7,84

57,32

31,76

19,52

68,84

5,48

-15,76

17,72

-17,2

-39,88

-42,76

-41,32

-58,6

-38,44

-37

-11,8

-28,72

-57,52

-3,88

19,52

-14,32

-23,68

-32,68

44

-1,36

-18,28

-26,56

-29,08

11,96

-24,4

-23,68

-7,48

-1,36

-23,68

22,76

7,64

29,24

47,96

28,52

26,72

46,52

-60,4

-66,16

33,2

36,8

11,52

-2,82

1,86

-6,42

9,06

-1,02

-0,3

-1,38

-4,62

-1,38

19,5

-1,38

4,38

3,3

0,42

4,38

-3,18

3,3

11,94

1,86

-5,34

-4,26

-4,26

-3,9

1,86

-2,82

1,86

-2,46

1,86

7,62

1,5

11,94

-1,74

-6,42

-3,18

-9,66

-6,42

-7,5

-6,78

-4,26

-1,02

-4,98

-2,82

5,82

0,78

3,66

1,86

-4,98

5,46

-4,62

1,14

4,02

-1,74

1,86

-1,78

-1,11

6,96

2,87

8,63

-1,95

2,42

0,02

4,49

2,26

6,18

-1,37

6,24

1,71

3,29

-3,12

-6,29

-5,02

-6,12

-5,81

-2,84

-4,44

0,5

-3,52

-1,23

-5,08

3,26

-4,09

-5,15

-2,67

11,03

-1,52

2,59

-1,21

6,55

6,7

-2,24

-0,67

0,2

-2,63

-4,87

2,67

3,12

6,94

2,76

-0,37

-1,22

8,73

-7,11

-7,86

-10,88

0,6

-0,09


Информация о работе «Корреляционно-регрессионный анализ»
Раздел: Экономика
Количество знаков с пробелами: 28931
Количество таблиц: 10
Количество изображений: 7

Похожие работы

Скачать
20402
2
2

... быстро выполняемой счетной операцией. Данная работа посвящена изучению возможности обработки статистических данных биржевых ставок методами корреляционного и регрессионного анализа с использованием пакета прикладных программ Microsoft Excel. Роль корреляцонно-регрессионного анализа в обработке экономических данных Корреляционный анализ и регрессионный анализ являются смежными разделами ...

Скачать
47400
19
11

... группы, установление связи и ее направление. Индексный метод является гибким аналитическим инструментом и может применяться в анализе показателе производственной, финансовой, инвестиционной и других видах деятельности предприятия (фирмы). Корреляционный и регрессионный анализ являются довольно сложной операцией. Исходными предпосылками для их проведения являются: случайный характер факторов, ...

Скачать
12353
0
0

... очередь, для обеспечения последовательного режима правильной постановкой задачи и наиболее подходящей выборкой из имеющихся данных. Исследователь, применяющий корреляционно-регрессионный анализ, отбирает наиболее адекватные и представительные территории, периоды времени, объекты исследования, виды факторов и т.д. Аналитический режим имеет заданный "вход" - исходную постановку задачи и выборку из ...

Скачать
83374
2
16

... ŷ = a0 + a1x , где ŷ - теоретические значения результативного признака, полученные по уравнению регрессии; a0 , a1 - коэффициенты (параметры) уравнения регрессии. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования ...

0 комментариев


Наверх