2.1 Степенные средние величины

 

2.1.1 Средняя арифметическая величина

Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объем признака в совокупности сохраняется неизменным.

Иначе можно сказать, что средняя арифметическая величина - среднее слагаемое. При ее вычислении общий объем признака мысленно распределяется поровну между всеми единицами совокупности.

Средняя арифметическая – наиболее распространенный на практике вид средних. Различают 2 вида арифметических средних:

·          Невзвешенную (простую);

·          Взвешенную.

Средняя арифметическая невзвешенная рассчитывается для несгруппированных данных по формуле:

.

Для массовых статистических совокупностей рассчитывается взвешенная средняя арифметическая по формуле:


.

 

Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины в качестве значения признака в группах принимают середины этих интервалов, т.е. исходят из гипотезы о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака надо определить экспертным путем исходя из сущности, свойств признака и совокупности. Например, по табл.2.1.1 можно минимальный возраст рабочих считать 17 лет. Тогда первый интервал будет от 17 до 20 лет, а максимальный возраст — 65 лет, тогда последний интервал — 50-65 лет.

Таблица 2.1.1 Распределение рабочих предприятия по возрасту

Группы рабочих по возрасту, лет

Число рабочих fj

Середина интервала xj

xj fj

До 20 48 18,5 888
20-30 120 25 3000
30-40 75 35 2625
40-50 62 45 2790
Старше50 54 57,5 3105
Итого 359 34,56 12408

Средний возраст рабочих, рассчитанный по формуле с заменой точных значений признака в группах серединами интервалов, составил:

 = ,

что и записано в итоговую строку по графе 3 табл.2.1.1.

Средняя арифметическая величина обладает рядом свойств, позволяющих ускорить расчет:

1.         Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты, т. е. .

Это свойство определено требованиями правильного исчисления средней, согласно которым конкретные значения варьирующего признака уравниваются без изменения общего объема его и заменяются одним средним числом, которое как постоянный множитель выносится из-под знака суммы. Благодаря этому свойству средняя может быть использована для разного рода плановых и статистических расчетов как представитель или заменитель всех значений варьирующего признака. Так, если средний расход горючего на 1 гектар пахоты составляет 20 литров, а всего надо вспахать 2 млн. га, то всего потребуется 40 млн. литров горючего. Аналогично, если достаточно репрезентативное выборочное обследование показало, что среднегодовой надой молока на одну корову составляет 2500 литров, а всего в районе 15 тыс. коров, то общий надой составит 37,5 млн. литров.

2.         Сумма отклонений вариантов как от простой, так и от взвешенной средней арифметической равна нулю:

 и

Рассмотренное свойство может быть использовано для проверки правильности исчисления средней. Если при исчислении средней арифметической  и  не равны нулю, это указывает, что средняя неправильно исчислена. А так как в анализе часто приходится пользоваться отклонениями от средней, их удобно использовать и для проверки правильности исчисления средней.

3.         Сумма квадратов отклонений вариантов как от простой, так и от взвешенной средней меньше суммы квадратов отклонений от любой другой произвольной величины а, т. е.


.

Пример:

Таблица 2.1.2

Табельный номер рабочего 1 2 3 4 5 6

Часовая выработка деталей (x)

12 10 6 10 12 10

В примере, основанном на данных табл. 2.1.2, , а

При а =12 составит:

Таблица 2.1.3

xi

- a

12

-12 0

0

10

-12 -2

4

6

-12 -6

36

10

-12 -2

4

12

-12 0

0

10

-12 -2

4

 

 

Итого

48

Как видим, 24<48.


Информация о работе «Средние величины»
Раздел: Экономика
Количество знаков с пробелами: 52450
Количество таблиц: 19
Количество изображений: 2

Похожие работы

Скачать
25804
10
2

... расчет таких характеристик приводит к замене множества различных индивидуальных значений признака средним показателем, характеризующим всю совокупность явлений, что позволяет выявить закономерности, присущие массовым общественным явлениям, незаметные в единичных явлениях. Средняя отражает характерный, типичный, реальный уровень изучаемых явлений, характеризует эти уровни и их изменения во времени ...

Скачать
22886
6
0

... 21 2,0 2,8 3,8 22 2,0 2,8 3,7 23 2,0 2,8 3,7 24 2,0 2,7 3,7 25 2,0 2,7 3,7 26 2,0 2,7 3,7 27 2,0 2,7 3,6 28 2,0 2,7 3,6 29 2,0 2,7 3,6 30 2,0 2,7 3,6 ¥ 1,9 2,5 3,3 ТЕСТЫ к практическому занятию по теме   «Средние величины, оценка разнообразия признака в вариационном ряду. Оценка достоверности» 1. Средние величины применяются для характеристики ...

Скачать
16143
0
1

... медианой. По такому же принципу легко найти значение признака у любой единицы ранжированного ряда. Таким образом, для расчёта средней величины вариационного ряда можно использовать целую совокупность показателей. 3. Основные показатели вариации и их значение в статистике При изучении варьирующего признака у единиц совокупности нельзя ограничиваться лишь расчётом средней величины из отдельных ...

Скачать
26918
12
1

... , а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина – это обобщающий показатель, характеризующий типичный уровень варьирующего признака в ...

0 комментариев


Наверх