1. рассмотреть решение ряда подготовительных задач;
2. доказать первый признак рав-ва треугольников.
Подготовительные задачи:
1) отрезки А1В1 и А1В2 равны отрезку АВ и отложены на полупрямой А1В1. Что ещё можно сказать о расположении отрезков А1В1 и А1В2 ?
2) Углы В1А1С1 и В1А1С2 равны углу А. Что можно сказать о расположении углов В1А1С1 и В1А1С2 ? Что можно сказать о расположении лучей А1С1 и А1С2, если они находятся в одной полуплоскости относительно прямой А1В1?
3) Треугольники А1В1С1 и А1В2С2 равны, вершина В2 лежит на полупрямой А1В1, вершина С2 лежит в одной полуплоскости (относительно прямой А1В1) с вершиной С1. Докажите, что эти треугольники совпадают, т.1. вершинаВ2 совпадают с вершиной В1, вершина С2 – с вершиной С1.
Рассмотренная первой методическая схема доказательства основана на применении репродуктивного метода обучения и он наиболее эффективен при изучении третьего признака равенства треугольников, наиболее сложного.
Схема решения задач па данной теме:
1) ученики читают задачу один – два раза, выполняют рисунок, записывают условие и требования задачи. Рассказать о требованиях к построению чертежей при решении задач по планеметрии.
2) Учитель направляет разбор задачи вопросами: “Что дано в задаче?”, “Что говорится о таком – то треугольнике?”, “Что ещё дано?”, “Что требуется выполнить в задаче?”, “С чего начнем выполнение рисунка?”, “Что ещё надо нарисовать?” и т. д.
3) Далее приступаем к поиску решения задачи:
Дано:
Доказать:
Доказательство:
У данных треугольников есть по одной равной паре соответствующих сторон и одному равному углу прилежащему к этой стороне. Для док-ва рав-ва треугольников по II признаку следует найти ещё пару равных углов - как вертикальные по II признаку рав-ва треугольников.
№32, §3, стр.47 Дано: А, В, С, Д лежат на одной прямой;
Доказать:
Доказательство:
1) ;
2) - по I признаку равенства треугольников;
3) ;
4) - по I признаку равенства треугольников;
Дано:
Доказать:
Доказательство:
1) (по условию); (по условию); - по III признаку равенства треугольников;
2) ;
3) - по I признаку равенства треугольников;
4) и - по III признаку равенства треугольников;
Ч.т.д.
Традиционно-синтетические аспекты занимают ведущее положение в геометрии, служат основой изложения остального материала, способствуют формированию пространственного представления и воображения учащихся (недаром некоторые разделы традиционно-синтетической геометрии(параллельность, перпендекулярность прямых и плоскостей, жесткость треугольника) называют “строительной геометрией”).
Придавая темам: параллельные и перпендикулярные прямые, признаки равенства треугольников, свойства равнобедренного и равностороннего треугольников, окружность, описанная около треугольника (вписанная в треугольник), задача на построение; четырёхугольники, правильные многоугольники, излагаем традиционно, максимальные образовательные цели, можно увидеть в них начала систематического курса геометрии.
В качестве вспомогательного математического метода к традиционно-синтетическому рассматривается координатно-векторный метод. Подготовка к вспомогательному методу выражается в раннем введении системы координат в ознакомлении учащихся с примерами решения задач координатным или векторно-координатным методом, в использовании формул расстояния между точками, если отказаться от координатно-векторного метода. Одновременное введение традиционно-синтетического и координатного методов в начале курса может быть обеспечено применением аксиоматически смешанного типа, причем неизбежно избыточной. Аксиоматику, в этом случае, следует рассматривать как инструмент рационализации логико-математической системы учебника.
1. К.О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае»,1997г.
2.Н.М.Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990г.
3.Г.Фройденталь «Математика как педагогическая задача»,М., «Просвещение», 1998г.
4.Н.Н. «Математическая лаборатория», М., «Просвещение», 1997г.
5.Ю.М.Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999г.
6.А.А.Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000г.
... Методика изучения аксиом стереометрии Построение системы аксиом стереометрии происходит по двум направлениям: 1) переформулирование аксиом планиметрии для пространства; 2) добавление новых “специфических” аксиом стереометрии. Первое из них осуществляется через принятие аксиомы: “В каждой плоскости пространства справедливы (выполнимы) все аксиомы планиметрии”. Второе состоит в формулировании ...
... учебник и задачник / А. П. Кисилев, Н.А. Рыбкин. – М.: Дрофа, 1995. 9. Изучение личности школьника / под. ред. Л.И. Белозеровой. – Киров, Информационный центр, 1991. 10. Коновалова, В.С. Решение задач на построение в курсе геометрии как средство развития логического мышления / В.С. Коновалова, З.В. Шилова // Познание процессов обучения физике: сборник статей. Вып.9. – Киров: Изд-во ...
... имеют достаточно четкое и правильное представление из собственного жизненного опыта, а формулировки которых являются слишком громоздкими. Выводы по § 1 1. Основные цели изучения темы «Объемы многогранников» в курсе стереометрии – развитие пространственных представлений учащихся, освоение способов вычисления практически важных величин и дальнейшее развитие логического мышления учащихся. ...
... . Позитивизма. Для позитивистов верным и испытанным является только то, что получено с помощью количественных методов. Признают наукой лишь математику и естествознание, а обществознание относят к области мифологии. Неопозитивизм, Слабость педагогики неопозитивисты усматривают в том, что в ней доминируют бесполезные идеи и абстракции, а не реальные факты. Яркий ...
0 комментариев