Проверка домашнего задания. До начала занятия один из учеников записывает домашнее задание на доске учитель и другие ученики проверяют решение

90068
знаков
3
таблицы
1
изображение

1.   Проверка домашнего задания. До начала занятия один из учеников записывает домашнее задание на доске учитель и другие ученики проверяют решение.

2.   Решение задач. На доске написан список задач. Учащиеся по одному решают у доски. Учитель напоминает, что данные уравнения и неравенства решаются с использованием множества значений функций, в них входящих.

 

1)   ;

2)   ;

3)   ;

4)   ;

5)   ;

6)   ;

7)   ;

8)   ;

9)   ;

10)                .

3.   Подведение итогов занятия.

Учитель выставляет баллы за занятие: 1 балл за решение домашнего задания, по одному баллу за решение задач у доски

4.   Постановка домашнего задания

Решить уравнения и неравенство:

1) ;

2) ;

3) ;

4) .

Занятие №7 Тема: «Использование неотрицательности функций, входящих в уравнение или неравенство».

Цели: познакомить учащихся с приемом решения уравнений и неравенств, состоящих из неотрицательных функций.

Ход занятия:

1.   Проверка домашнего задания. На доске записывается ответ к каждому заданию. Уравнение, вызвавшее трудности, разбирается учеником, выполнившим его.

2.   Изучение нового материала.

Утверждение 1. Пусть имеется уравнение . Если множество значений каждой из функций  принадлежит промежутку , то уравнение равносильно системе .

‑Назовите функции, которые принимают неотрицательные значения на всей области определения ().

Пример1. Решить уравнение .

Преобразуем уравнение . Наше уравнение будет равносильно системе , которая не имеет решений. Значит и исходное уравнение решений не имеет.

Аналогичное утверждение можно сформулировать и для неравенств.

Утверждение 2. Пусть имеется неравенство . Если множество значений каждой из функций  принадлежит промежутку , то неравенство равносильно системе .

Пример 2. Решить неравенство .

Так как для любого x справедливы неравенства , то неравенство равносильно системе , решением которой является . Значит, неравенство имеет единственное решение .

Утверждение 3. Пусть имеется неравенство . Если множество значений каждой из функций  принадлежит промежутку , то решениями неравенства являются все x из ОДЗ, за исключением тех x, которые являются решениями системы .

Пример 3. Решить неравенство

ОДЗ неравенства . Для нахождения решения неравенства нужно исключит из его ОДЗ все решения системы . Решениями неравенства являются все x из множества .

3.   Решение задач. На доске написаны два варианта заданий. Учащиеся в течение 13-15 минут решают каждый свой вариант, затем в паре обмениваются тетрадями и проверяют решение соседа по парте и ставят баллы (по одному за каждое верное решение уравнения или неравенства). Учитель выписывает ответы на доске.

Вариант 1.

1)      ;

2)      ;

3)      .

Вариант 2.

1)  ;

2)  ;

3)  .

4.   Подведение итогов занятия. Учитель выставляет баллы полученные учениками. 1 балл ставится ученику, объяснявшему домашнее задание.

5.   Постановка домашнего задания

Решите уравнения и неравенство:

1)   ;

2)   ;

3)   ;

4)   .

Занятие №8 Тема: «Использование свойств четности или нечетности и периодичности функций».

Цель: знакомство с новым приемом решения уравнений и неравенств – использование свойств четности, нечетности и периодичности функций.

Ход занятия:


Информация о работе «Решение уравнений и неравенств с использованием свойств функций на элективном курсе по математике в старших классах общеобразовательной школы»
Раздел: Педагогика
Количество знаков с пробелами: 90068
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
89678
5
2

... -иллюстративного и репродуктивного метолов, а экономический профиль ориентирован на формирование прикладного стиля мышления. 2. Методика проведения элективных курсов по математике в профильной школе   2.1 Цели организации элективных курсов по математике   Принципиальным положением организации школьного математического образования в настоящее время является дифференциация обучения ...

Скачать
87023
7
1

... список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром»   1.1. Общие ...

Скачать
45824
3
0

... учащихся к ЕГЭ, учителя математики СОШ №26 г.Якутска используют перечень вопросов содержания (кодификатор) школьного курса математики, усвоение которых проверяется при сдачи единого государственного экзамена 2007г. Элективный курс по подготовке к Единому Государственному Экзамену основан на повторении, систематизации и углублении знаний полученных ранее. Занятия проходят в форме свободного ...

Скачать
33147
1
12

... образом: «Показательно-степенные уравнения и неравенства». Целями настоящей работы являются: 1.           Проанализировать литературу по данной теме. 2.           Дать полный анализ решения показательно-степенных уравнений и неравенств. 3.           Привести достаточное число примеров по данной теме разнообразных типов. 4.           Проверить на урочных, факультативных и кружковых занятиях ...

0 комментариев


Наверх