1. изучение учебных пособий и методической литературы, содержащей этот материал;
2. анализ психологической, педагогической и методической литературы по данной теме.
Теоретические основы изучения темы «Интеграл» с помощью моделей
1.1. Модели и моделирование в процессе обученияМодель - очень широкое понятие, включающее в себя множество способов представления изучаемой реальности.
Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели. Многовековой опыт развития науки доказал на практике плодотворность такого подхода.
Под моделью понимается объект, воплощающий данную идею или интерпретирующий некоторую теорию. Построение объекта называется конкретизацией, или моделированием.
Моделирование представляет собой обязательный этап процесса научного познания. Между моделью и моделируемым объектом имеется определенное отношение – модельное отношение. Это отношение показывает, в каком смысле оригинал и его модель подобны, аналогичны.[9]
Применение метода моделирования при изучении математики в школе дает возможность получить наиболее достоверные (поскольку доказательство некоторых математических фактов в школьном курсе не предусмотрено) и наглядные результаты, раздвинуть границы знаний учащихся об окружающем мире, развивать их мышление.
Модель должна быть наилучшим образом приспособлена к восприятию учащихся и учитывать их психологические особенности. В процессе обучения учитель обязан помогать учащимся формировать научный взгляд на мир. В процессе моделирования учащиеся могут научиться таким операциям, как анализ изучаемого объекта, выполнение доказательств, объяснений и т.п.[9]
Операции над моделями учат школьников умению абстрагировать, конструировать, обобщать, т.е. способствуют развитию мышления. Таким образом, моделируя, учащиеся развивают свое логическое мышление.
В моделировании есть два заметно разных пути. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Модель может, однако, отображать реальность более абстрактно - словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.д.
Современная физика – часть общечеловеческой культуры, характеризующей интеллектуальный уровень общества, степень понимания основ мироздания. Среди других наук физика по-прежнему сохраняет роль лидера естествознания, определяя стиль и уровень научного мышления. [9]
Поэтому среди возможных моделей при изучении математики в школе (в частности темы «Интеграл») наиболее актуальными являются физические модели. В работе были использованы:
· известные законы физики (например, второй закон Ньютона в импульсном представлении, всемирный закон притяжения);
· модели физических явлений, выраженные формулами, известными из школьных учебников физики (например, формула мощности постоянного тока, силы взаимодействия между зарядами);
· задачи с физическим содержанием (например, задача о вытекании воды из сосуда, давлении жидкости на стенку).
1.2. Психолого – педагогические и методические основы изучения интеграла в школьном курсе математики
Необходимость изучения интеграла в школе характеризуется тем, что:
1. если изучать только производную, но не изучать интеграл, то цикл анализа одной переменной не будет завершен;
2. в приложениях (в том числе в физике) гораздо чаще, чем задачи на вычисление производной, её применение, используются задачи с использованием интеграла, интеграла и производной;
3. понятие интеграла очень существенно для общего образования учащихся (человек раньше стал решать интегральные задачи).
Целью изучения математического анализа (в том числе интегрального исчисления) в общеобразовательной школе является:
1. овладение основными понятиями (в частности, понятием интеграла);
2. обучение решению простейших задач на применение начал анализа в других школьных дисциплинах, в практике;
При рассмотрении понятия интеграла в школах с углубленным изучением математики возможно также и обучение простейшим методам интегрирования (технике вычисления интеграла).
Учителю в своей работе необходимо учитывать факторы, влияющие на успешность обучения.
Во-первых, следует тщательно отбирать теоретический материал, сочетая научность и доступность изложения. И хотя полностью реализовать принцип научности при изучении интеграла не удается, у учащихся все же формируются правильные представления о процессе познания и его закономерностях.
Содержание, формы и методы обучения должны учитывать реальные возможности учащихся, но, тем не менее, иметь достаточно высокий уровень трудности.
Во-вторых, необходимо учитывать общий уровень математической подготовки учащихся, особенности их мышления и восприятия и, в соответствие с этим, выбирать тот или иной путь изложения материала.
В-третьих, для лучшего запоминания материала, развития наблюдательности, для иллюстрации мыслей необходимо применять на уроке различные виды наглядности (чертежи, графики…)
И, наконец, в-четвертых, важную роль играет систематичность и последовательность в обучении.
Стройное, логичное изложение теоретического материала, а также хорошо подобранная система упражнений способствует развитию мышления, памяти, внимания и речи учащихся, формирует такие специальные качества, как умение строить математические модели реальных процессов и явлений, исследовать и изучать их. Т. е., является одним из средств достижения цели общего образования.
Систему упражнений нужно строить так, чтобы способствовать усвоению основных понятий, активизировать мыслительную деятельность учащихся и постоянно поддерживать их интерес к уроку. Этому помогут задачи на исследование, доказательство.
При формировании основного понятия (интеграла) необходимо учитывать, что оно даётся в достаточно общей, абстрактной форме. Потому главная трудность состоит в конкретизации, т. е. в умении видеть за математическими терминами и их определениями конкретные образы. Здесь большую помощь ученику должны оказать хорошо подобранные примеры.
Так как изучаемое понятие достаточно сложно, то существует несколько стадий его усвоения. Хорошо овладеть понятием интеграла учащимся помогут специально подобранные упражнения.
Помимо знания определения понятия ученик должен, по возможности, иметь о них зрительное представление (например, определенный интеграл – перемещение точки за промежуток времени). Раз усвоенные физические образы, рисующие картину рассматриваемого явления, надолго остаются в памяти и живут в воображении изучающего.
Каждый теоретический факт, даже и доказанный учащимися самостоятельно, следует по возможности немедленно закреплять при выполнении конкретных упражнений.
Важно показывать учащимся прикладную значимость материала при изучении других школьных дисциплин, в частности, различных разделов физики.
... имеют достаточно четкое и правильное представление из собственного жизненного опыта, а формулировки которых являются слишком громоздкими. Выводы по § 1 1. Основные цели изучения темы «Объемы многогранников» в курсе стереометрии – развитие пространственных представлений учащихся, освоение способов вычисления практически важных величин и дальнейшее развитие логического мышления учащихся. ...
... точек координатной оси. Занятие № 4. Тема: Аналитический метод. Метод «ветвлений». Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр. Литература для учителя: см. [1] , [5], [6], [7], [14] Литература для ученика: см. [3] Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению ...
... разработчиками. На сегодняшний день существует широкий спектр программ от простейших, контролирующих до сложных мультимедийных продуктов. 2. Опытно-экспериментальная работа по формированию познавательной потребности у учащихся средствами информационных технологий 2.1 Особенности изучения темы "Интеграл" в школьном курсе математики Выбор темы "Интеграл" неслучаен. Тема "Интеграл" изучается ...
... . Позитивизма. Для позитивистов верным и испытанным является только то, что получено с помощью количественных методов. Признают наукой лишь математику и естествознание, а обществознание относят к области мифологии. Неопозитивизм, Слабость педагогики неопозитивисты усматривают в том, что в ней доминируют бесполезные идеи и абстракции, а не реальные факты. Яркий ...
0 комментариев