2. Интерполяция по Ньютону

Дана табличная функция:

i

0

1

2

.. .. ..
n

Или

,  (1)

Точки с координатами  называются узловыми точками или узлами.

Количество узлов в табличной функции равно N=n+1.

Необходимо найти значение этой функции в промежуточной точке, например, , причем . Для решения задачи используется интерполяционный многочлен.

Интерполяционный многочлен по формуле Ньютона имеет вид:

где n – степень многочлена,

Интерполяционная формула Ньютона формула позволяет выразить интерполяционный многочлен  через значение  в одном из узлов и через разделенные разности функции , построенные по узлам .

Сначала приведем необходимые сведения о разделенных разностях.

Пусть в узлах

,

известны значения функции . Предположим, что среди точек , , нет совпадающих. Разделенными разностями первого порядка называются отношения

, ,.

Будем рассматривать разделенные разности, составленные по соседним узлам, т. е. выражения

.

По этим разделенным разностям первого порядка можно построить разделенные разности второго порядка:

,

,

Таким образом, разделённая разность -го порядка на участке может быть определена через разделённые разности -го порядка по рекуррентной формуле:

. (3)

где , , - степень многочлена.

Максимальное значение  равно . Тогда  и разделенная разность n-го порядка на участке  равна

,

т.е. равна разности разделенных разностей -го порядка, разделенной на длину участка .

Разделенные разности

 

являются вполне определенными числами, поэтому выражение (1) действительно является алгебраическим многочленом -й степени. При этом в многочлене (1) все разделенные разности определены для участков , .

При вычислении разделенных разностей принято записывать их в виде таблицы

  

Разделенная разность -го порядка следующим образом выражается через значения функции  в узлах:

. (1)

Эту формулу можно доказать методом индукции. Нам потребуется частный случай формулы (1):

Интерполяционным многочленом Ньютона называется многочлен

 

Рассмотренная форма полинома Ньютона носит название первой интерполяционной формулы Ньютона, и используется, обычно, при интерполировании вначале таблицы.

Заметим, что решение задачи интерполяции по Ньютону имеет некоторые преимущества по сравнению с решением задачи интерполяции по Лагранжу. Каждое слагаемое интерполяционного многочлена Лагранжа зависит от всех значений табличной функции yi, i=0,1,…n. Поэтому при изменении количества узловых точек N и степени многочлена n (n=N-1) интерполяционный многочлен Лагранжа требуется строить заново. В многочлене Ньютона при изменении количества узловых точек N и степени многочлена n требуется только добавить или отбросить соответствующее число стандартных слагаемых в формуле Ньютона (2). Это удобно на практике и ускоряет процесс вычислений.

Программирование функции формулы Ньютона

Для построения многочлена Ньютона по формуле (1) организуем циклический вычислительный процесс по . При этом на каждом шаге поиска находим разделенные разности k-го порядка. Будем помещать разделенные разности на каждом шаге в массив Y.

Тогда рекуррентная формула (3) будет иметь вид:

 (4)

В формуле Ньютона (2) используются разделенные разности -го порядка, подсчитанные только для участков т.е. разделенные разности -го порядка для . Обозначим эти разделенные разности k-го порядка как . А разделенные разности, подсчитанные для , используются для расчетов разделенных разностей более высоких порядков.

Используя (4), свернем формулу (2). В результате получим

 (5)

где

– значение табличной функции (1) для .

– разделенная разность -го порядка для участка .

.

Для вычисления Р удобно использовать рекуррентную формулу  внутри цикла по .

Схема алгоритма интерполяции по Ньютону представлена на рисунке:


Function POlinom(n: integer; d:real; x,y :per):real;

var

l:real;

k,i:integer;

p: real;

begin

L:=y[0];

P:=1;

for k:=1 to n do begin

P:=P*(D-X[k-1]);

for i:=0 to (n-k) do begin

Y[i]:=(y[i+1]-y[i])/(x[i+k]-x[i]);

end;

L:=L+P*y[0];

end;

Polinom:=l;

end;

где

n – количество узлов

x[i],y[i] – табличные значения функции

D – точка, в которой необходимо вычислить значение l

Обзор литературных источников


Информация о работе «Интерполяция функции одной переменной методом Ньютона»
Раздел: Информатика, программирование
Количество знаков с пробелами: 23209
Количество таблиц: 3
Количество изображений: 3

Похожие работы

Скачать
33577
0
0

... с помощью рекурентных соотношений? 104) Приведите конечно-разностные выражения для первой производной. 105) Подынтегральная функция y = f(x) задана таблицейВзяв h = 0,3, вычислить интеграл  на отрезке [0,3; 0,9] методом Симпсона. Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету ЧИСЛЕННЫЕ МЕТОДЫ Билет № 22 106) Как ...

Скачать
15031
3
3

x, отличных от узлов интерполяции. Такая операция называется интерполированием функции f(x). При этом различают интерполирование в узком смысле, когда x принадлежит интервалу [x0, xn], и экстраполирование, когда x не принадлежит этому интервалу. В такой общей постановке задача интерполирования может иметь бесчисленное множество решений. Чтобы получить единственную функцию F(x), необходимо ...

Скачать
15886
3
4

... корни находятся на расстоянии b: . Тогда , откуда Знак перед корнем выбирают с таким расчетом, чтобы получить наибольшее значение знаменателя. Еще один метод, который применяют для поиска корней полиномов, – метод сопровождающей матрицы (companion matrix). Можно доказать, что матрица , называемая сопровождающей матрицей для полинома , имеет собственные значения равные корням полинома ...

Скачать
25583
3
10

... звеньев первого и второго порядка представлена на следующем рисунке: 3. Методы расчета БИХ-фильтров и вид целевой функции Расчет БИХ-фильтров можно вести в частотной и временной областях. При расчете в частотной области используется синтез по аналоговому и цифровому прототипам. Численные методы расчета разработаны для применения в частотной и временной областях. ...

0 комментариев


Наверх