2.1.5 Отображение в окне

При формировании изображения на экране монитора, как уже было сказано, необходимы дополнительные преобразования, поскольку система координат в плоскости проецирования может не совпадать с системой координат устройства отображения.

Пусть (Xэ, Yэ, Zэ) – это экранные координаты объектов в графическом устройстве отображения. Координаты проецирования обозначим как (X, Y, Z).

Преобразование координат проекции в экранные координаты можно представить как растяжение/сжатие и сдвиг:

.

Такое преобразование сохраняет пропорции объектов благодаря одинаковому коэффициенту растяжения/сжатия k для всех координат. Следует отметить, что для плоского отображения координату Z можно отбросить.

  2.1.6 Алгоритм Z-буфера

После получения треугольников ландшафта (триангуляции равномерной сетки) и проецирования их на экранную плоскость следует построение изображения ландшафта. В процессе его построения для удаления невидимых поверхностей используется алгоритм Z-буфера.

Это один из простейших алгоритмов удаления невидимых поверхностей. Работает этот алгоритм в пространстве изображения. Идея Z-буфера является простым обобщением идеи о буфере кадра. Буфер кадра используется для запоминания атрибутов (интенсивности) каждого пикселя в пространстве изображения, Z-буфер - это отдельный буфер глубины, используемый для запоминания координаты Z (глубины) каждого видимого пикселя в пространстве изображения. В процессе работы глубина или значение Z каждого нового пикселя, который нужно занести в буфер кадра, сравнивается с глубиной того пикселя, который уже занесен в Z-буфер. Если это сравнение показывает, что новый пиксель расположен впереди пикселя, находящегося в буфере кадра, то новый пиксель заносится в этот буфер и, кроме того, производится корректировка Z-буфера новым значением Z. Если же сравнение дает противоположный результат, то никаких действий не производится. По сути, алгоритм является поиском по x и y наибольшего значения функции Z(x, у). Блок-схема алгоритма выглядит следующим образом:


Рис. 2.1.6.1. Блок-схема алгоритма Z-буфера

Как уже было отмечено, главное преимущество алгоритма — его простота. Так как габариты пространства изображения фиксированы, оценка вычислительной трудоемкости алгоритма не более чем линейна. Поскольку элементы сцены или картинки можно заносить в буфер кадра или в Z-буфер в произвольном порядке, их не нужно предварительно сортировать по приоритету глубины. Поэтому экономится вычислительное время, затрачиваемое на сортировку по глубине, например в алгоритме художника.

Существенным недостатком алгоритма является потребность в значительном объеме памяти. Но в связи с тем, что стоимость оперативной памяти постоянно снижается, и установка дополнительных модулей памяти на индивидуальном компьютере стала привычным делом, этому недостатку перестали уделять особое внимание.

Другой недостаток алгоритма Z-буфера состоит в трудоемкости устранения лестничного эффекта, а также реализации эффектов прозрачности и просвечивания. Но так как в этой работе не ставилась задача реализации этих эффектов, то использование алгоритма Z-буфера вполне обоснованно.

Математическое содержание алгоритма заключается в следующем: если известно уравнение плоскости, несущей каждый многоугольник, то вычисление глубины каждого пикселя на сканирующей строке можно проделать пошаговым способом. Уравнение плоскости имеет вид:

Для сканирующей строки, поэтому глубина пикселя на этой строке, у которого , равна

или

,

но , поэтому .

Нахождение же абсцисс точек пересечения горизонтали со сторонами треугольника (это единственный вид многоугольников, используемый при визуализации в данной работе) производится следующим образом:

·        для всех сторон треугольника записываются параметрические уравнения вида

;

·        затем для каждой стороны находится параметр t при пересечении с горизонталью :

;

·        если , то рассчитывается абсцисса точки пересечения горизонтали со стороной треугольника:

.

Рис. 2.1.6.2. Поиск абсцисс точек пересечения горизонтали со сторонами треугольника

 


Информация о работе «Построение изображений ландшафта в реальном времени»
Раздел: Информатика, программирование
Количество знаков с пробелами: 67267
Количество таблиц: 5
Количество изображений: 27

Похожие работы

Скачать
24360
0
0

... средств. К примеру, Adobe Photoshop сейчас не является чисто растровым редактором, a CorelDRAW имеет довольно развитые средства работы с растровой графикой. 2. Графические редакторы, используемые для создания векторных и растровых изображений Редакторы растровой графики Microsoft Paint - простой (или лучше сказать - простейший) редактор, входящий в стандартную поставку операционных систем ...

Скачать
24268
0
3

... поле зрения оптической системы. Положим, что D (рис.3) - действительная диафрагма, которая ограничивает пучок световых лучей, участвующих в формировании изображения, - апертурная диафрагма, DxuD2 - изображения этой диафрагмы в передней и задней частях оптической системы. Если Dy или D2 заменить реальными диафрагмами, то они будут ограничивать световой поток так же, как диафрагма D. На основании ...

Скачать
99490
3
0

... стало очень динамичным, разномасштабным, многоракурсным и цветовым, вследствие чего значительно возросла информационная насыщенность зрительного ряда. Глава 3. Соотношение слова и изображения в аудиовизуальном сообщении 1. Комплексное аудиолингвовизуальное сообщение Изображение как знаковая система первична по отношению к символическим знакам, в том числе и к написанному слову1. Первоначально ...

Скачать
96923
0
0

... после «Четырех апостолов» тоже не создал ничего значительного. Он скончался через два года после завершения этой работы — в 1528 году. Творчество Дюрера не имело непосредственных продолжателей, но его влияние на искусство Германии было огромным, решающим. Художники одного с ним поколения, так же как и его младшие современники, уже совсем иными глазами смотрели на мир, нежели мастера 15 в. Острый ...

0 комментариев


Наверх