3.   Внутренняя механическая энергия системы – это ее энергия

 .

 

4. Шарик с кинетической энергией T, испытав лобовое соударение с первоначально покоившейся упругой гантелью (рис. 8), отлетел в противоположном направлении с кинетической энергией . Массы всех трех шариков одинаковы. Найти энергию колебаний гантели после удара.

Решение. пусть -импульсы налетающего шарика до и после удара, а -импульс и кинетическая энергия гантели как целого после удара, Е -энергия колебаний. Согласно законам сохранения импульса и энергии,

.

Из этих двух уравнений с учетом того, что , получим

.

5 В К-системе частица 1 массы  налетает на покоящуюся частицу 2 массы . Заряд каждой частицы равен . Найти минимальное расстояние, на которое они сблизятся при лобовом соударении, если кинетическая энергия частицы 1 вдали от частицы 2 равна .

 

 

Рис. 9


Решние . Рассмотрим этот процесс как в К-системе, так и в Ц-системе.

1.               В К-системе в момент наибольшего сближения обе частицы будут двигаться как единое целое со скоростью  , которую можно определить на основании закона сохранения импульса:

,

где p1 –импульс налетающей частицы,  

С другой стороны, из закона сохранения энергии следует

,

где приращение потенциальной энергии системы

Исключив  из этих двух уравнений, найдем

.

2.               В Ц-системе решение наиболее просто: здесь суммарная кинетическая энергия частиц идет целиком на приращение потенциальной энергии системы в момент наибольшего сближения:

,

где , согласно (4.16),

 

Отсюда легко найти  

 


6. Частица массы  с импульсом  испытала упругое столкновение с покоившейся частицей массы . Найти импульс  первой частицы после столкновения, в результате которого она рассеялась под углом  к первоначальному направлению движения.

Решение. Из закона сохранения импульса (рис. 69) находим

 

 

где -импульс второй частицы после столкновения.

С другой стороны, из закона сохранения энергии следует, что , где -кинетические энергии первой и второй частиц после столкновения. Преобразуем это равенство с помощью соотношения  к виду



Если


то физический смысл имеет только знак плюс перед корнем. Это следует из того, что при этом условии корень будет больше, чем а так как ṕ́’1 – это модуль, то, естественно, он не может быть отрицательным.

Если же m1>m2 , то физический смысл имеют оба знака перед

корнем – ответ в этом случае получается неоднозначным: под углом

импульс рассеянной частицы может иметь одно из двух значений (это зависит от относительного расположения частиц в момент соударения).

1.7. Какую часть η своей кинетической энергии теряет частица массы m1 при упругом рассеянии под предельным углом на покоящейся частице массы m2 , где m1>m2


§ 1.3 Анимационное моделирование процесса обучения механических систем

Эксплуатация реальных физических установок обычно требует серьезных финансовых затрат, а к учебным экспериментам на них, к тому же, предъявляются особые требования по технике безопасности. Поэтому для обучения удобно использовать не реальные установки, а их компьютерные модели. Существующие методы, используемые при разработке программ, позволяют существенно приблизить имитационные эксперименты к реальным.

Разработанная компьютерная анимационная обучающая система моделирует в реальном масштабе времени движение тел, масса которых в процессе движения не остается постоянной. Подобные движения широко встречаются в природе и технике. Наибольший интерес рассмотрение движения тел переменной массы приобретает в тех случаях, когда вследствие изменения массы возникают силы, приводящие в движение эти тела. Эти силы, которые получили название реактивных, обеспечивают полет ракет разных систем, реактивных снарядов, самолетов с воздушно - реактивными двигателями и т. п.

Рассмотрим движение тела, масса которого убывает вследствие того, что из него постоянно выбрасываются частицы с некоторой относительной скоростью u.

Введем понятие расход массы  («скоростью убывания массы»).

Изменение импульса системы  за малый промежуток времени  на основании второго закона Ньютона можно приравнять импульсу внешних сил :

Пусть в момент времени  тело имело массу  и скорость ; импульс его в этот момент


В момент времени  масса этого тела , а скорость ; масса выброшенных частиц , их скорость в той же системе отсчета . Импульс системы в момент времени  будет равен

Пренебрегая бесконечно малой величиной второго порядка , получаем, вычитая (1) из (2),

 

или

Уравнение (4) представляет собой закон движения тела, выбрасывающего часть своей массы со скоростью  при ежесекундном расходе . Из этого выражения следует, что в случае движения тела с переменной массой произведение массы движущегося тела на ускорение определяется не только равнодействующей приложенных к ней внешних сил , но и реактивной силой, равной произведению расхода массы в секунду  на относительную скорость движения отбрасываемых частиц . Реактивная сила направлена противоположно скорости, с которой выбрасываемые частицы покидают тело. Уравнение движения тела переменной массы впервые было получено И. В. Мещерским. На основании этого уравнения К. Э. Циолковским впервые были намечены пути решения проблемы космических полетов.


 

 

Рис.1

На рис. 1 представлена простейшая механическая модель, позволяющая не только измерить реактивную силу, но и проследить основные закономерности движения тел переменной массы. Основными элементами этой установки являются два цилиндра А и В, соединенные нитью, перекинутой через неподвижный блок С. Цилиндры полые, равного объема и массы. Один из них В имеет одно отверстие в середине дна, другой А – два одинаковых противоположно расположенных отверстия в боковых поверхностях. Оба цилиндра наполняются водой. Отверстия в них выполнены так, что масса воды, вытекающей в единицу времени (расход), одинакова для обоих цилиндров. В результате истечения воды из цилиндра В возникает реактивная сила , действующая на этот цилиндр и приводящая в движение всю систему. Эта сила направлена вертикально вверх, а величина ее определяется относительной скоростью истечения воды  и скоростью изменения массы воды в цилиндре:

В предложении, что блок невесом, нить нерастяжима и трение в системе отсутствует, уравнение движения цилиндра В может быть представлено в виде (рис. 1)


Здесь  - мгновенное значение массы цилиндра с водой в любой момент времени, Т-упругая сила натяжения нити.

Уравнение движения цилиндра А (при тех же условиях) имеет вид

а расстояние , пройденное цилиндром В за время  , может быть рассчитано по формуле

Где -масса цилиндра с водой при .


ГЛАВА 2. АНИМАЦИОННО – ОБУЧАЮЩИЙ МЕТОД МЕХАНИЧЕСКОЙ СИСТЕМЫ

 

§ 2.1 анимация свойств механической системы

Эффект анимации – вывод изменяющегося, динамического изображения. Сам этот термин можно перевести как “одушевление” или “оживление” статичного (неподвижного) изображения. “Живые картинки” в компьютерной графике могут использоваться для развлечения, например в компьютерных играх. Современное кино уже трудно представить без использования спецэффектов, построенных с помощью анимации. У анимации есть и более серьезные приложения в научной и инженерной графике. При отображении результатов компьютерного моделирования в физике, химии, автомобиле – и авиастроении часто используются прямы анимации. Ведь включение в изобразительные средства “четвертого”, временного измерения, позволяет увеличить их информативность .

В англоязычной специальной литературе используют Computer-assisted animation и Computer- generated animation. В первом случае имеется в виду подход, когда человек традиционными средствами создает ключевые кадры анимации, а компьютер “дорисовывает” все промежуточные кадры. А во втором случае движущееся изображения создаст сам компьютер.

Иллюзию движущееся изображения создает просмотр последовательности неподвижных изображений(кадров), показывающих разные фазы движения. Смена этих изображений должна происходить достаточно быстро. Зрительное восприятие человека обладает некоторой инерцией, вследствие чего последовательность кадров и воспринимается как главное движение. Если скорость смены изображений чуть меньше времени реакции зрительных рецепторов, иллюзия движения сохраняется, но это движение кажется человеком прерывистым. Хорошей скоростью считается скорость показа 30 кадров в секунду.

Чтобы вывести на экран дисплея динамическое изображение, надо запрограммировать вывод последовательности кадров. Скорость смены кадров при этом должна быть достаточна большой. В этом, собственно, и заключается основная проблема при программировании динамических изображений. Если каждый кадр содержит сложное изображение, состоящее из большого числа графических элементов, да еще со своими атрибутами, такими как условие освещения, характер отражающей поверхности и т.д. ,решить эту проблему не просто. Простейший способ включения анимации и в программу - это обычная перерисовка графического экрана. Здесь мы имеем дело с простейшими изображениями, но даже в этом случае глаз замечает мерцание изображения и его “подергивание” при перерисовке.

Для ознакомления с базовыми приемами компьютерной анимации (или просто – чтобы было понятнее) приведем пример. Скажем, что имеется зеленый квадрат, который нужно переместить из левой части экрана в правую. И сделать это надо в течение 25 кадров. В случае первого «по кадрового» способа анимации нам придется нарисовать все двадцать пять кадров, и в каждом последующем кадре чуть-чуть сдвигать квадрат, чтобы он оказался справа на 25-м кадре. А если вдруг понадобится, чтобы он исчезал (увеличивался атрибут прозрачности) экспоненционально? Что, придется все это считать вручную и присваивать нужное значение прозрачности на каждом кадре?

Вовсе нет. Для этого существует второй способ анимации – с помощью промежуточных отображений. В этом случае только задается ключевые кадры, а промежуточные просчитывает автоматически.

Методы анимации.

Анимация – исскуственное представление движения в кино, на телевидении или в компьютерной графике, путем отображения последовательности рисунков или кадров с частотой, при которой обеспечивается целостное зрительное восприятие образов (как правила, для плавного воспроизведения анимации необходима скорость, или частота кадров, не менее 10 кадров в секунду – инертность зрительного восприятия).

Частоты смены кадров за секунду экранного времени составляет:

10..16-для компьютерной анимации.

24 - для кинематографа.

25 - для системы PAL или SECAM телевещания.

30- для системы NТSC телевещания.

Компьютерная анимация – это один из главных элементов мультимедия проектов и презентаций.

Разница между анимацией и видео состоит в том, что видео использует непрерывное движение и разбивает его на множество дискретных кадров.

Анимация использует множество независимых рисуноков или графических файлов, которые выводятся в определенной последовательности для создания иллюзии непрерывного движения. Для создания компьютерной анимации существует множество программных приложений.

Классическая анимация.

Эта метод представляющий собой поочередную смену рисунков, каждый из которых нарисован отдельно (принцип мультфильма). Этот метод очень трудоемкий из-за необходимости создания каждого рисунка.

Кукольная анимация.

В пространстве размещаются объекты – кадр фиксирует их положение, положение объектов меняется – опять фиксируется следующим кадром.

Спрайтовая анимация.

Это анимация, реализуемая при помощи языка программирования или специального инструментального средства. В спрайтовой анимации отсутствует понятие кадра (принцип подвижных игр). Почти всегда базируется на работе с «прозрачным» цветом.

Морфинг.

Преобразование одного графического образа в другой. Часто выполняется программно. Программное обеспечение морфинга генерирует заданное число промежуточных кадров, которое обеспечивает плавный переход начального образа в конечный.

Анимация цветом.

Положение объектов не изменяется, меняется лишь цвет. Часто выполяется программно.

Создается с помощью специальных программ (3D Studio MAX, PovRay, LightWave, Maya,…).

Картинка получается путем визуализации сцены.

Каждая сцена представляет собой следующее:

-набор объектов

-набор источников света

-набор текстур

-набор камер (хотя обычно одна)

Метод ключевых или опорных кадров.

Наиболее распространенным способом создания анимации является метод ключевых или опорных кадров. Ключевым событием может являться не только изменение параметров одного из возможных преобразований объекта (положения, поворота или масштаба), но также изменение любого из допускающих анимацию параметров (свойства источников света, материалов и др.). После определения всех ключевых кадров, система компьютерной анимации выполняет автоматический расчет событий анимации для всех остальных кадров, занимающих промежуточное положение между ключевыми – промежуточных кадров.

Процедурная анимация.

Для моделирования движений, или эффектов, которые трудно воспроизвести с помощью ключевых кадров, используется процедурная анимация. В процедурной анимации рассчитывают текущие значения параметров анимации, основываясь на начальных значениях, заданных пользователем, и на математических выражениях, описывающих изменение параметров во времени. Этот метод позволяет выполнять качественные анимации. Часто, процедурная анимация используется для разнообразных эффектов.

Прямая кинематика – перемещение объекта – родителя оказывает влияние на всю цепь объектов – потомков. Выглядит это так, будто опорные точки дочерних объектов связаны с опорными точками родительского объекта жесткими рычагами. Если перемещается родительский объект, дочерний объект также будет перемещаться, не изменяя своего положения относительно объекта – предка. Если перемещается родительский объект, дочерний объект также будет перемещаться, не изменяя своего положения относительно объекта – предка. Если родительский объект поворачивается, то дочерний перемещается и поворачивается, то дочерний перемещается и поворачивается таким образом, что его положение и ориентация по отношению к родительскому объекту остаются неизменными.

§2.1.1 обучающие программы

Современное время характеризуется возрастающими темпами научно-технического прогресса, непрерывным увеличением объема и изменением содержания знаний, умений и навыков, которыми должны владеть современные специалисты различных категорий, следствием чего является повышение требований к качеству их подготовки.

Одним из перспективных способов повышения эффективности процесса обучения является его автоматизация, т.е. использование в качестве средства обучения современной вычислительной техники. Эффективность использования компьютерной техники зависит от многих факторов. И первым из них следует назвать обучающую программу. Без всякого преувеличения можно утверждать, что она является сердцевиной обучающей системы.

Что представляет собой обучающая программ? Это программа, которая управляет учебной деятельностью учащегося и выполняет, как правило частично, функции учителя. В обучающей программе можно выделить следующие компоненты:

• учебные материалы (тексты, рисунки, схемы, задачи, вопросы и т. д.);

• специальную программу , определяющую, какую именно учебный материал и в какой последовательности представляется учащемуся.

Иногда в обучающей программе содержатся не тексты учебных задач (вопросов), а определенные правила, в соответствии с которыми система генерирует задачи (вопросы). С точки зрения дидактики систему компьютерного обучения можно представить как систему обучающих программ и способов их реализации (иногда вместо термина обучающая программа используют такие термины, как педагогический программный продукт, учебное обеспечение, пакет прикладных программ). Компьютер (техническое обеспечение) и программное обеспечение выступают как средство реализации обучающей программы, а их параметры реализуются с точки зрения возможностей и способов реализации обучающих программ. Это ни в коей мере не снижает роль компьютера и его программного обеспечения. Однако они должны оцениваться не сами по себе, а с точки зрения дидактических возможностей (и, естественно, ограничений), которые оказывают влияние на учебный процесс.

Основные проблемы связанные с компьютерным обучением

Обучающие программы реализуются с помощью компьютера и вполне естественно, что при их разработке ведущее место приобрели проблемы, связанные с машиной (программной) реализацией программ. Ведь не смотря на то, что возможности компьютера значительно возросли с каждым годом увеличиваются, реализация многих обучающих функций которые легко осуществляет даже неопытный педагог, связана с большими трудностями (например, распознавание ответа учащегося).Однако нельзя считать правильной весьма распространенную точку зрения, будто ключ к решению основных проблем компьютерного обучения – это разработка средств которые позволяют осуществлять переход от сценария обучающей программы к компьютерной программе. Такое представление в ряде случаев сказалось на разработке и оценке роли инструментария для программирования обучающих курсов (их называют обычно системными средствами автора). Многие разработчики таких систем (как правило, в целях рекламы) преувеличивают не только возможности созданных ими авторских систем, но и вообще их значение. Это обстоятельство, по мнению специалистов, играет отрицательную роль в исследуемых актуальных проблем разработки обучающих программ.

Преувеличение возможностей авторских средств часто сочетается с недооценкой важности тех психолого-педагогических проблем, которые возникают при разработки обучающих программ. Некоторые разработчики авторских средств полагают, будто учителя, а также специалисты в области информатики и вычислительной техники, имея смутные представление о психолого-педагогических особенностях обучения, а некоторые и о содержании того или иного учебного предмета, в состоянии создать эффективную обучающую программу.

Распространение подобных взглядов оказало влияние не только на теорию, но и на практику разработки обучающих программ. В ряде стран, например, в США и особенно в Великобритании, в течение последних 10-15 лет появилось не поддающееся учету количество микроскопических по своим размерам фирм (многие из них имеют штат из двух-трех программистов), которые разрабатывают обучающие программы, предназначенные для продажи. В нашей стране также нередко среди единоличных разработчиков обучающих программ были специалисты по вычислительной технике. Эта их деятельность, хотя и несколько отличалась от выполняемой ранее, тем не менее по своей сути оставалось привычной для них. В результате создавались многочисленные, но малоэффективные программы. Именно такая практика стала основным источником иллюзий, будто наибольшие трудности в разработке обучающих программ представляет кодирование или как часто говорились, программирование обучающих курсов.

Следует иметь в виду, что термин программирование трактуется по –разному: в более узком смысле – как составление программы для компьютера и как разработка программ в широком смысле слова. Когда мы говорим, что система образования и общество в целом программируют личность, то мы понимаем, что здесь речь идет о том, что общество в целом в частности через систему образования, оказывает большое влияние на становление человека как личности. Применительно к компьютерному обучению выражение “программирование обучающих курсов” стало восприниматься как синоним “разработки обучающих курсов”. А это привело к серьезным отрицательным последствиям:

· Отвлекло внимание от наиболее важных и трудоемких проблем-психолого-педагогических проблем разработки обучающих программ (обучающих курсов) – и тем самым, естественно, затормозило их исследование.

·           Породило иллюзию, будто создав удобный инструментарий для кодирования обучающих программ, можно с помощью педагогов-энтузиастов решить проблему создания эффективных обучающих программ (обучающих курсов).

Разумеется, вину за это нельзя полностью возлагать на первых разработчиков обучающих программ и инструментария для кодирования (программирования) обучающих курсов. Просто они, не будучи педагогами, не усматривали тех психолого-педагогических проблем, которые возникают при разработке обучающих программ. Предполагалось, что, имея перед глазами внешне наблюдаемое поведение педагога, можно составить эффективную обучающую программу для компьютера.

Психолого-педагогический аспект компьютерного обучения

Недооценка психолого-педагогических проблем компьютеризации обучения, недостаточный учет психологических особенностей деятельности педагога и учащегося не могли не сказаться на качестве авторских систем, предназначенных для программирования (в узком смысле слова) обучающих курсов. Дидактические возможности их, как правило, были весьма ограничены. И дело не в том, что они налагали определенные ограничения на способ управления учебной деятельностью, на выбор учебных задач. Более существенно, что большинство авторских систем строилось на ошибочных представлениях о процессе обучения.

Поясним это более подробно, поскольку иногда полагают, что системы автора нейтральны по отношению к теоретическому представлению обучения и поэтому разрабатываемый инструментарий может быть использован для программирования обучающих систем, реализующих различные теоретические подходы. На самом деле это не так. Разработчики системы автора всегда исходят из некоторой модели обучения, из определенного представления о том, как именно следует управлять учебной деятельностью. Поскольку часто разработчики таких систем не имеют достаточной теоретической подготовки, они иногда чересчур смело полагаются на рекомендации отдельных психологов, не зная исходных теоретических предпосылок, основных принципов психологической теории, которых те придерживаются. Следовать таким рекомендациям особенно заманчиво, если их относительно легко реализовывать с помощью компьютера: это значительно упрощает разработку системы автора.

Данная точка зрения самым непосредственным образом сказалась на теории и практике разработки авторских систем. Многие из них содержат явный отпечаток бихевиористических теорий обучения, которые основное внимание удаляют правильному ответу, игнорируя мыслительную деятельность обучаемого. С точки зрения бихевиористов, основным в обучении является увеличение вероятности правильного ответа на некоторый стимул (например, предлагаемую учебную работу).

В настоящие время все большее число специалистов в области компьютерного обучения вынуждено признать, что основные проблемы при разработке обучающих программ – психолого-педагогические. По мнению многих специалистов, программирование обучающей программы – это лишь один этап ее разработки, который требует не более 10-20% времени и усилий. К тому же данный этап относится к наиболее изученным, его реализации при наличии опытных специалистов, как говорится, дело техники.

Следует иметь в виду, что применение компьютера оказывает исключительно большое влияние на все аспекты учебного процесса: и на содержание учебного материала, и на используемые учебные задачи, и на мотивацию учащихся и т.д. Все это обусловливает исключительно большое значение психолого-педагогических проблем для разработки эффективных обучающих программ.

Компьютеризация обучения отчетливо показала, что многие психологические и дидактические понятия и концепции работают”: основываясь на них, нельзя разработать эффективные обучающие программы. Проблема здесь не только в том, что многие из понятий еще не имеют однозначной трактовки. Ведь, в принципе, можно было бы договориться о том, какой именно трактовки следует придерживаться. Дело в том, что трактовка этих понятий не допускает их технологизации.

Некоторые особенности обучающих программ

Создание обучающих программ – творческий процесс, требующий не только логического мышления, но и интуиции. Этот процесс еще изучен недостаточно и не может быть описан с помощью жестких нормативов-предписаний. Много опасностей и ловушек подстерегает разработчиков обучающих программ. Для педагогов самая большая опасность – механический перенос особенностей обучения в классе (группе) на компьютерное обучение, стремление как можно более точно скопировать работу педагога. Хотелось бы отметить, что механический перенос в принципе недопустим по следующим причинам:

·           Даже самый опытный педагог, мастер своего дела, далеко не всегда сможет описать свою деятельность и тем более объяснить каждое свое решение (многие решения принимаются педагогом интуитивно, они не полностью осознаются, и на вопрос, почему принято именно такое, а не иное решение в большинстве случаев отвечают: так подсказал опыт, это известно из практики и т.д.).

·           Групповое, классное обучение, опыт которого приобретает педагог, не является адекватной моделью компьютерного обучения, которое обладает многими особенностями индивидуального обучения, существенно отличаются от группового.

·           Компьютер не только накладывает определенные ограничения на реализацию учебного процесса, он раскрывает новые возможности в управлении учебной деятельностью. Это происходит прежде всего за счет неограниченных возможностей в предъявлении материала, применения разнообразных учебных задач, построения модели обучаемого путем накопления и переработки больших массивов данных, относящихся к учащемуся, неограниченного запаса знаний, относящихся к данной предметной области, и т.п.

Кроме того следует иметь в виду, сто разработка обучающих программ – это качественно иная, в сравнении с практической, деятельность педагога. Можно уметь решить задачу, но не уметь составить алгоритм. А ведь при разработке обучающей программы необходимо составить алгоритм работы компьютера, который отнюдь не копирует, а моделирует деятельность педагога и даже те же самые функции реализует иными способами. К тому же разработка обучающих программ требует более глубоких знаний не только в определенной предметной области, но и знаний об учебном процессе и учащихся. Мировой опыт убедительно показывает, что даже опытные практические работники, прошедшие специальную подготовку, нередко составляют весьма бледные обучающие программы, которые дают результаты значительно хуже, чем традиционное обучение.

Справедливости ради стоит отметить, что далеко не все обучающие программы, составленные специалистами в области обучения, оказались эффективными. Многие из них настолько скучные и неинтересные, что от них отказались как учителя, так и учащиеся.

Составление обучающих программ – это наука и искусство. Оно требует и глубоких знаний, и педагогического таланта.

Для программистов серьезную опасность представляет попытка механически перенести принципы разработки пакетов программ на создание педагогических программных продуктов (обучающих программ). Нельзя забывать, что эти программы управляют деятельностью живых людей, обладающих волей, мотивами, интересами, которые оказывают большое внимание на процесс обучения.

Чтобы обеспечить эффективное использование компьютера в учебном процессе, недостаточно заложить в компьютер систему указаний, даже правильных самих по себе. Необходимо спроектировать условия, в которых учащийся захочет следовать этим указаниям, а не поступать вопреки им. Только та обучающая программа сможет обеспечить эффективное обучение, разработчики которой учитывают в должной мере человеческий фактор, видят в учащихся субъектов учебной деятельности, а не придаток к компьютеру, слепо повинующийся его указаниям.

Основные типы программ применяемых в образовании.

Многообразие применений компьютеров делает возможным и даже необходимым систематизацию форм использования и типов программ. Принцип независимости может оказаться подходящим критерием для классификации, отвечающей педагогическим соображениям. Независимость в этом смысле предполагает способность учащихся принимать участие в определение целей и содержания своей деятельности, влиять на процесс обучения и управлять применяемыми средствами.

Упрощенная классификация программ может быть составлена по восходящей: от тех, которые структурируют работу и учение, до тех, которые позволяют делать это самим учащимся.

Управляющие программы, выполняющие некоторые традиционные функции учителя, в частности управления классом. Они содержать команды, не только касающиеся работы на компьютере, но и, например, дающие учащимся указание покинуть рабочее место, с тем чтобы что-то проверить, получить дополнительные данные, обсудить ход работы с соучениками и т.д.

Обучающие программы, направляющие обучение исходя из имеющихся у учащегося знаний и его индивидуальных предпочтений; как правило, они предполагают усвоение новой информации.

§ 2.1.2 описание установки

ПРИБОРЫ и ПРИНАДЛЕЖНОСТИ:

Экспериментальная установка (рис. 2), состоящаяся из двух цилиндров 7, связанных нитью, перекинутой через блок 1, системы подвода воды 5, 6 и отчетных устройств 2, 3, смонтирована в виде стенда на стене.

Наполнение обоих цилиндров водой производится одновременно с помощью трубы 5 с распределительными отводами 6. Труба 5 выполнена подвижной, с тем чтобы после наполнения цилиндров иметь возможность приостановить подачу воды одновременно в оба цилиндра, для чего труба отводится влево. Для отсчета уровня воды в цилиндрах на них нанесены шкалы 9. Система приходит в движение только после того, как ограничительная пластина 10 опустится . в горизонтальном положении она удерживается замком 4 и фиксирует стопорные диски 11 и 12.

Величина пройденного пути определяется расстоянием, проходимым диском 12 до упорного кольца 2, и измеряется по шкале 3, нуль которой совмещен с начальным положением диска 12.

Вода, вытекающая из цилиндров, попадает в сосуд 8, имеющий сток.


 


Задание 1. Определение расхода массы цилиндров

При выполнении этого задания цилиндры находятся в неподвижном состоянии.

1.   Наполнить цилиндры водой.

2.   Прекратить доступ воды в цилиндры, передвинув трубу 5 в крайнее левое положение.

3.   Провести измерения уровня воды в левом цилиндре через каждые 2 с. секундомер включается в тот момент, когда уровень проходит нулевое деление шкалы 9, нанесенной на цилиндр.

4.   Проделать измерения п. 3 для правого цилиндра. Указанные измерения для каждого из цилиндров провести не менее трех раз. Результаты измерений занести в таблицу. Рассчитать расход воды, принимая ее плотность равной p=1г/см3 (площадь сечения цилиндров рассчитывается по известному внутреннему диаметру). На основании полученных результатов построить график зависимости  расхода воды от времени. При малых значениях времени истечения эта зависимость должна представлять прямую линию, тангенс угла наклона которой к оси времени с учетом масштаба дает величину .

5.   Используя график  , рассчитать секундный расход воды в обоих цилиндрах.

Убедиться, что скорость истечения жидкости для обоих цилиндров примерно одинакова.

Задание 2. Экспериментальное определение ускорения системы

1.   Наполнить цилиндры водой.

2.   Прекратить подачу воды в цилиндры, передвинув трубу 5 в крайнее левое положение.

3.   В тот момент, когда опускающееся уровни воды в цилиндрах проходят нулевую отметку шкал 9, открыв замок 4, опустить упорную пластину 10 и включить секундомер.

4.   В момент удара шайбы 12 об упорное кольцо 2 остановить секундомер.

5.   Для данного расстояния , проходимого цилиндрами, произвести не менее трех измерений времени (повторить п. 1-4).

6.   Меняя положение упорного кольца 2, т. е. меняя расстояния, проходимые системой, произвести измерения времени движения для 4-5 расстояний (повторить п. 1-5).

Результаты измерений занести в таблицу.

7.   На основании полученных результатов построить график . Из данного графика определить ускорение цилиндров.

Задание 3. Определение относительной скорости истечения воды

1.Скорость истечения воды из цилиндров рассчитать в соответствии с формулой  , где -средняя арифметическая высота уровня воды за время движения, - безразмерный коэффициент скорости, равный для данной установки 0,97. Среднюю высоту уровня жидкости найти с помощью графика, полученного в задании 1. По этому графику определить высоту  столба жидкости , вытекающей за время движения. Высоту  рассчитать как разность между высотой  столба воды в начальный момент  и половинной высотой столба вытекшей воды . Высота столба воды в начальный момент известна.  

Задание 4.Определение теоретического значения ускорения движения по результатам

измерения α и u

1.   По значениям секундного расхода воды  и скорости истечения , полученным в заданиях 1 и 3, рассчитать ускорение движения системы по формуле  


Информация о работе «Разработка анимационно-обучающей программы механической системы»
Раздел: Информатика, программирование
Количество знаков с пробелами: 102471
Количество таблиц: 0
Количество изображений: 17

Похожие работы

Скачать
124889
11
2

... для обучения физике и математике, в силу их отсутствия на рынке. Исходя из вышеизложенных соображений, я считаю, что тема моей дипломной работы «Разработка электронного учебника по математике для студентов I курса отделения информатика-иностранный язык» является актуальной в силу того, что потребность в таком электронном учебнике несомненно есть, а самих учебников по данной теме либо совсем нет, ...

Скачать
235892
25
6

... работе в графическом режиме предназ­начается для обучения студентов младших курсов Санкт-Петербургской государственной Академии аэрокосмического приборостроения навыкам программирования, а именно работе в графическом режиме языка Turbo-Pascal . Для работы с настоящей программой необходимо знание стандарта языка, интегрированной среды и элементарным навыкам работы с персональным компьютером . ...

Скачать
31703
0
0

... тему, вопрос. Все, происходящее по этой программе должно соответствовать выбранной тематике. 3.  Организация тематического мероприятия В основе тематической анимационной программы обязательно должен лежать сценарий, т.е. подробная литературная разработка содержания тематического вечера, в которой в строгой последовательности излагаются отдельные элементы действия, раскрывается тема, ...

Скачать
85003
5
3

... плана и состав слушателей, происходит определение стратегии курса, разрабатывается сценарий и интерактивное взаимодействие программы с пользователями. Разрабатываемый электронный справочник предназначен для самостоятельной работы студентов младших курсов по изучению Visual Basic в рамках университетского курса. Его создание имеет своей целью предоставить студентам, изучающим Visual Basic весь ...

0 комментариев


Наверх