1.2 Нейронные сети
Теория нейронных сетей возникла в 40-60-х годах в результате совместных попыток физиологов и кибернетиков понять и смоделировать работу мозга. Получилась следующая модель. Мозг состоит из очень большого числа (порядка 1011) клеток (нейронов), каждая из которых имеет длинный хвост (аксон) и большое число (порядка 104) ответвлений (дендритов), касающихся аксонов других нейронов и/или входных рецепторов. Через эти зоны касания (синапсы) может передаваться информация (электрохимический потенциал).
Каждый нейрон является простеньким компьютером: потенциал нейрона (и его аксона, играющего роль выхода) является функцией от потенциалов синапсов его дендритов (входов), причем функцией вполне определенного вида. А именно, каждый нейрон имеет два устойчивых состояния (возбужденное и невозбужденное) и соответствующие им значения потенциала, одинаковые для всех нейронов. Каждый нейрон вычисляет линейную комбинацию потенциалов входных синапсов, сравнивает ее с пороговым значением и переходит в возбужденное (невозбужденное) состояние если эта линейная комбинация больше (соответственно, меньше) порогового значения.
В совокупности мозг вычисляет некоторую вектор-функцию: зависимость потенциалов нейронов (достаточно рассматривать не все нейроны, а только связанные своими аксонами с исполнителями) от потенциалов входных рецепторов. А вся нетривиальность работы мозга состоит в том, что пороговые значения (по одному на нейрон, итого порядка 1011) и коэффициенты линейных комбинаций (по одному на дендрит, итого порядка 1015), вообще говоря, различны и могут изменяться со временем. Это изменение коэффициентов называется обучением. Нейронная сеть прямого распространения - это ориентированный ациклический граф с множеством вершин V и ребер E, вершины которого разбиты на слои следующим образом:
- нулевой слой состоит из вершин-истоков (входных рецепторов) v 0,1,...,v0,d;
- ребра (синапсы), входящие в вершины (нейроны) (k+1)-го слоя, выходят из вершин (рецепторов или нейронов) k-го слоя;
- все стоки (выходные нейроны) vL,1,...,yL,q принадлежат одному и тому же L-му слою.
Существует классификация нейронных сетей.
1. Многослойные нейронные сети
Архитектура многослойной нейронной сети (МНС) состоит из последовательно соединённых слоёв, где нейрон каждого слоя своими входами связан со всеми нейронами предыдущего слоя, а выходами - следующего. НС с двумя решающими слоями может с любой точностью аппроксимировать любую многомерную функцию. НС с одним решающим слоем способна формировать линейные разделяющие поверхности, что сильно сужает круг задач ими решаемых, в частности такая сеть не сможет решить задачу типа "исключающее или". НС с нелинейной функцией активации и двумя решающими слоями позволяет формировать любые выпуклые области в пространстве решений, а с тремя решающими слоями - области любой сложности, в том числе и невыпуклой.
При этом МНС не теряет своей обобщающей способности. Обучаются МНС при помощи алгоритма обратного распространения ошибки, являющегося методом градиентного спуска в пространстве весов с целью минимизации суммарной ошибки сети. При этом ошибки (точнее величины коррекции весов) распространяется в обратном направлении от входов к выходам, сквозь веса, соединяющие нейроны.
2.Нейронные сети высокого порядка
Нейронные сети высокого порядка (НСВП) отличаются от МНС тем, что у них только один слой, но на входы нейронов поступают так же термы высокого порядка, являющиеся произведением двух или более компонент входного вектора. Такие сети так же могут формировать сложные разделяющие поверхности. Особенность такой сети заключаются в том, что для обучения некоторому классу достаточно предъявить его образ без вариаций масштабов и поворотов - после обучения сеть будет распознавать известные классы инвариантно к масштабу и поворотам. Такая сеть не является полносвязной, быстро обучается и работает. Отмечено существенное повышение точности классификации такой сетью повёрнутых и масштабированных изображений по сравнению с МНС.
3.Нейронные сети Хопфилда
НС Хопфилда (НСХ) является однослойной и полносвязной (связи нейронов на самих себя отсутствуют), её выходы связаны со входами. В отличие от МНС, НСХ является релаксационной - т.е. будучи установленной в начальное состояние, функционирует до тех пор, пока не достигнет стабильного состояния, которое и будет являться её выходным значением. НСХ применяются в качестве ассоциативной памяти и для решения оптимизационных задач. В первом случае НСХ обучается без учителя (например, по правилу Хебба), во втором случае веса между нейронами изначально кодируют решаемую задачу. НСХ бывают синхронными, когда одновременно пересчитываются все нейроны и асинхронными, когда пересчитывается случайно выбранный нейрон. Для исследования динамики функционирования НСХ используются методы Ляпунова.
Показано, что асинхронная НСХ всегда сходится к устойчивым точкам, а аттракторами синхронной НСХ являются устойчивые стационарные точки и предельные циклы длины два. Таким образом НСХ из начального состояния сходится к ближайшему локальному минимуму энергии сети, состояние нейронов в котором и будет восстановленным образом для задач распознавания, и решением - для оптимизационных задач. Для поиска глобального минимума применительно к оптимизационным задачам используют стохастические модификации НСХ.
4.Самоорганизующиеся нейронные сети Кохонена
Самоорганизующиеся нейронные сети Кохонена (СНСК) обеспечивают топологическое упорядочивание входного пространства образов. Они позволяют топологически непрерывно отображать входное n-мерное пространство в выходное m-мерное.
Нейронная сеть с радиально-базисной функцией (НСРБФ) является дальнейшим развитием НС Кохонена, в которой после конкурентного слоя добавлен ещё один слой, обучаемый по методу обратного распространения. В отличие от НС Кохонена в НСРБФ выходами нейронов конкурентного слоя являются значения функции Гаусса с нормальным законом распределения, и обнуление не победивших нейронов не требуется. Ширина радиально-базисной функции характеризует расстояние между центром кластера, который образуется каждым нейронным элементом и его ближайшими соседями.
5.Когнитрон
Когнитрон своей архитектурой похож на строение зрительной коры, имеет иерархическую многослойную организацию, в которой нейроны между слоями связаны только локально. Обучается конкурентным обучением (без учителя). Каждый слой мозга реализует различные уровни обобщения; входной слой чувствителен к простым образам, таким, как линии, и их ориентации в определенных областях визуальной области, в то время как реакция других слоев является более сложной, абстрактной и независимой от позиции образа. Аналогичные функции реализованы в когнитроне путем моделирования организации зрительной коры.
Неокогнитрон является дальнейшим развитием идеи когнитрона и более точно отражает строение зрительной системы, позволяет распознавать образы независимо от их преобразований, вращений, искажений и изменений масштаба. Неокогнитрон может, как самообучаться, так и обучаться с учителем. Неокогнитрон получает на входе двумерные образы, аналогичные изображениям на сетчатой оболочке глаза, и обрабатывает их в последующих слоях аналогично тому, как это было обнаружено в зрительной коре человека. Конечно, в неокогнитроне нет ничего, ограничивающего его использование только для обработки визуальных данных, он достаточно универсален и может найти широкое применение как обобщенная система распознавания образов.
В зрительной коре были обнаружены узлы, реагирующие на такие элементы, как линии и углы определенной ориентации. На более высоких уровнях узлы реагируют на более сложные и абстрактные образы такие, как окружности, треугольники и прямоугольники. На еще более высоких уровнях степень абстракции возрастает до тех пор, пока не определятся узлы, реагирующие на лица и сложные формы. В общем случае узлы на более высоких уровнях получают вход от группы низкоуровневых узлов и, следовательно, реагируют на более широкую область визуального поля. Реакции узлов более высокого уровня менее зависят от позиции и более устойчивы к искажениям.
Когнитрон является мощным средством распознавания изображений, однако требует высоких вычислительных затрат, которые на сегодняшний день недостижимы.
В искусственных нейронных сетях, как и в мозгу, все вычисления происходят параллельно, и тем самым, очень быстро. В реальности нейронные сети моделируются на обычных последовательных компьютерах и работают довольно медленно, поэтому на количестве вершин и ребер сети приходится экономить. В 80-е годы на волне повышенного интереса к параллельным вычислениям были созданы и вполне действующие аппаратные реализации нейронных сетей.
... , бистабильность восприятия. В дальнейшем планируется разработка программных моделей более сложных нейронных сетей и их комбинаций с целью получения наиболее эффективных алгоритмов для задачи распознавания образов. Литераура. 1.Горбань А.Н.,Россиев Д.А..Нейронные сети на персональном компьюере. 2. Минский М.Л.,Пайперт С..Персепроны.М.: Мир.1971 3. Розенблатт Ф.Принципы ...
... его, человек высказывает гипотезы, продвигающие его к знанию распознающей деятельности в природе, что позволяет ему успешно решать стоящие задачи. Рассматриваемый курс “Основы построения систем распознавания образов” и должен научить пониманию того, что лежит в основе современных гипотез распознавательной деятельности и как на этой основе упомянутые задачи решаются.1.1.2. Краткая история вопроса ...
... буквами. При превышении некоторого порога слово "вырезается" из строки. Процесс продолжается до конца строки. Алгоритм сегментации текста представлен в графической части 2.2 Алгоритм распознавания слова. Персептрон Распознавание слова "Указ" в разработанном приложении, реализовано на базе персептрона. Алгоритм обучения персептрона – без учета правильности ответа. Персептрон построен по ...
... мнению академика Российской академии медицинских наук Сергея Колесникова, на показатели смертности влияет множество природных и социальных факторов. «Прежде всего это образ жизни, который формирует 50% состояния здоровья, генетические данные, экология и медицинская помощь», рассказал он в интервью газете ВЗГЛЯД. «И если в рамках нацпроекта «Здравоохранение» власти стали уделять внимание сердечно- ...
0 комментариев