2. КРАЕВАЯ ЗАДАЧА В ЧАСТНЫХ ПРОИЗВОДНЫХ
В качестве демонстрационной краевой нестационарной задачи возьмем задачу теплопроводности с непрерывным временем. На этой задаче удобно показывать как динамику нагрева объекта, так и установившееся распределение температурного поля.
2.1 Задача теплопроводности с непрерывным временем
Применение метода прямых рассмотрим на примере решения уравнения теплопроводности следующего вида:
,
которое описывает изменение температуры вдоль металлического стержня длиной в 1 метр (), вваренного своими концами в две металлические пластины с разными, постоянно поддерживаемыми на них температурами
и .
Начальное распределение температуры по длине будем задавать для внутренних точек как
.
Единичную длину стержня разобьем на 8 равных частей
()
и обозначим изменяющееся значение температуры в каждой точке через .
2.2 Вариант аппроксимации дифференциальными уравнениями
Применим трех точечную аппроксимацию частной производной второго порядка, воспользовавшись таблицей 2 из раздела 1.4. Для внутренних точек и для приграничных точек коэффициенты в аппроксимирующем выражении второй производной оказываются одинаковыми. Это позволяет для каждой внутренней точки, размеченного на 8 частей стержня, записать следующую систему дифференциальных уравнений первого порядка относительно скорости изменения температур в каждой точке:
Для получения числовых значений зададим конкретные величины. Так коэффициент В для теплоизолированного по боковой поверхности алюминиевого стержня равен теплопроводности этого материала, т.е. l=200 вт/(м×К).
Удвоенный квадрат шага по длине стержня равен 2´0.1252=0.03125 м2.
Вместо температуры введем относительную переменную, разделив левую и правую части на 100°:
.
Если все коэффициенты перенести в правую часть и, вычислить, записав результат перед скобками, то система уравнений примет окончательный вид:
В полученной системе j 0=1, а j 8=0.
В случае аппроксимации производной по времени конечными разностями «вперед», что в цифровой моделирующей среде может случиться и при непрерывном времени, соотношение между шагом по временной переменной и по пространственной должно подчиняться следующему неравенству: . При несоблюдении этого условия решение может оказаться численно неустойчивым.
2.3 Программирование для математического моделирования
Полученная в пункте 2.2 система дифференциальных уравнений, благодаря представлению искомых переменных в относительном виде, при максимальных напряжениях на выходах операционных блоков в 1 вольт и масштабных множителях, равных единице, специального расчета коэффициентов передач не требует. Коэффициенты по входам сумматоров будут такими же, как в уравнениях.
Рисунок 1
2.4 Программирование задачи для метода аналогий
Если в окончательной системе дифференциальных уравнений, полученных в п. 4.2, каждое уравнение преобразовать по Лапласу и разрешить относительно переменной с индексом переменной в правой части, то получится система следующего вида:
,
где - ранее вычисленный коэффициент;
p - комплексный параметр, вызванный применением преобразования Лапласа к производной.
Рисунок 2
Аналогичное выражение получается для напряжений в пассивной электрической цепи, показанной на рисунке 2, если для входных и выходных напряжений использовать одинаковую индексацию.
Зависимость напряжения на внутреннем узле по отношению к общему проводу будет:
.
Если положить равными и , то достаточно при емкости С=1 мкФ выбрать сопротивление R=160 кОм. В этом случае a=6.25 1/с.
Соединив такие ячейки (аналоги дифференциальных уравнений системы) в последовательную электрическую цепь, мы получаем аналоговую модель дифференциального уравнения теплопроводности, которая изображена на рисунке 3.
Рисунок 3
2.5 Моделирование и численное решение задачи
2.5.1 Решение задачи методом моделирования
Таблица 5.-Численное представление результатов моделирования
2.5.1 Решение задачи методом аналогий
Рисунок 5
Выводы
Рисунки 4 и 5, представляющие решение задачи теплопроводности двумя методами, оказались практически идентичными. Затраты на подготовку к моделированию в среде виртуальной гибридной вычислительной машины свелись к построению схем соединения операционных блоков и заданию их параметров. Самой громоздкой частью процесса решения задачи в частных производных, независимо от применяемых вычислительных средств, является построение аппроксимирующей математической модели.
Таким образом, использованию пакета схемотехнического моделирования и созданной в его среде виртуальной гибридной машине альтернативы, на наш взгляд, нет. По крайней мере, это справедливо для задач с числом уравнений до ста. Наибольшим достоинством такого решения состоит в наглядности, оперативности и точности получаемых результатов.
... равенства и неравенства. При полном равенстве в распределении доходов "кривая Лоренца" представляла бы собой прямую и, наоборот, кривизна усиливается по мере роста неравенства. В соответствии с современной экономической теорией нежелательно как абсолютное равенство в распределении доходов, так и резкий разрыв в уровне жизни различных групп населения. Абсолютное равенство в доходах не стимулирует ...
... . Сложность совместной работы и обмена имеющейся информацией обусловлена ее высокой стоимостью, секретностью, проблемами достоверности и совместимости данных. 2.3 Информационные технологии управления муниципальной недвижимостью Эффективное управление объектами недвижимости должно обеспечить: - полный учет объектов муниципальной собственности; - эффективный контроль за использованием ...
... интервал времени. В этом случае поведение АСОД может быть представлено только в дискретных точках (группа динамических моделей с дискретным временем). 6 Описание программы автоматизации учета исполнения бюджета Краснодарского края 6.1 Средства разработки 6.1.1 Компилятор BORLAND PASCAL 7.0 Программа написана на языке Turbo Pascal версии 7.0. Турбо Паскаль появился на рынке программных ...
0 комментариев