2. Дано уравнение

x3-0,2x2+0,4x-1,4=0.

Решить его методом касательных с точностью решения=0,001.

Для нахождения корня исследуем функцию

.

График функции представлен на рисунке 2.5

Рисунок 2.5 - График исследуемой функции


Находим отрезок, в котором функция монотонно возрастает или убывает, а также где концы отрезка будут иметь разные знаки.

Выбираем концы отрезка: a= -0.1; b = 1.5 График функции на этом отрезке представлен на рисунке 2.6

Рисунок 2.6 - График функции на выбранном отрезке

Проверяем существование корня на отрезке по условию

-3,066375

3,066375 <0, следовательно, на данном промежутке корень есть.

Исследуем функцию на монотонность:

6,2225>0

Экстремумов на выбранном отрезке нет.

Находим первую производную функции:

;

В точке a первая и вторая производные равны:

,

В точке b первая и вторая производные равны:

,

Выбираем тот конец отрезка, значение функции в котором совпадает со знаком 2-ой производной.

Принимаем:

x0= 1,5 2.125*6.55=13,91875,

По формуле

 

находим:

x>0.001

 

x>0.001

x>0.001

x<0.001

Необходимая точность достигнута при n=4, т.е. на 4-й итерации.

Так как заданная точность достигнута, то процесс можно прекратить.

Теперь строим график функции x=, т.е. последовательность xn, стремящаяся к x* и условием сходимости здесь является  (рисунок 2.7).

Рисунок 2.7 - График функции  для исследуемой функции


2.3 Метод хорд 2.3.1 Общие сведения

Как и в методе хорд, функция f (x) должна удовлетворять на отрезке [a, b] следующим условиям:

1) существование производных 1-го и 2-го порядков;

2) f ’ (x)  0;

3) производные 1-го и 2-го порядков знакопостоянны на отрезке [a, b].

За начальное приближение x0 принимается один из концов отрезка [a, b], где значение функции имеет такой же знак, что и 2-я производная. За x1 выбирается второй край отрезка. В данном методе процесс итераций состоит в том, что в качестве приближений корню уравнения принимаются значения х0, х1,… точек пересечения хорды с осью абсцисс (рисунок 2.8).

Рисунок 2.8 - Метод хорд

Формула для n-го приближения имеет вид:

Итерационный процесс останавливают при выполнении условия ; где ε - заданная точность.


2.3.2 Решение нелинейного уравнения методом хорд
Информация о работе «Сравнительный анализ численных методов»
Раздел: Информатика, программирование
Количество знаков с пробелами: 38687
Количество таблиц: 3
Количество изображений: 48

Похожие работы

Скачать
18618
0
16

... уравнений (2) сводится к последовательному решению двух следующих систем уравнений с треугольными матрицами коэффициентов L Y = B; (6) U X = Y (7) линейный алгебраический уравнение численный где Y =  - вектор вспомогательных переменных. Такой подход позволяет многократно решать системы линейных ...

Скачать
42464
5
31

... 4 - график унимодальной, но не выпуклой функции Таким образом, кроме перечисленных свойств, выпуклые функции обладают также и всеми свойствами унимодальных функций. 2. Прямые методы безусловной оптимизации Для решения задачи минимизации функции f (х) на отрезке [а; b] на практике, как правило, применяют приближенные методы. Они позволяют найти решение этой задачи с необходимой точностью ...

Скачать
7913
0
3

... – остаточный член, характеризующий погрешность формулы. Заметим, что формулы вида (2) называют квадратурными формулами. Геометрический смысл численного интегрирования состоит в вычислении площади криволинейной трапеции, ограниченной графиком функции f(х), осью абсцисс и двумя прямыми х = а и х = b. Приближенное вычисление площади приводит к отбрасыванию в квадратурных формулах остаточного члена ...

Скачать
47503
2
14

... задачи, а именно: 1. Создана расчетная схема анализа на основании сравнительного анализа численных методов, а также программных и технических средств их осуществления; 2. Создан выбор метода автоматизированного анализа объекта проектирования; 3. Спланирован и проведен эксперимент, анализируя результаты которого, приходим к выводу, что данная модель может использоваться с параметрами: r = 5 R = ...

0 комментариев


Наверх