Министерство Топлива и Энергетики Украины
СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ
ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ
Практическое занятие №3
по дисциплине
«Использование ЭВМ в инженерных расчетах электротехнических систем»
Тема : ЭВМ С ИСПОЛЬЗОВАНИЕМ МАТЕМАТИЧЕСКОГО ПАКЕТА MathCad В СРЕДЕ WINDOWS ДЛЯ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ N-го ПОРЯДКА.
Вариант №8
Выполнил: студент группы ЭСЭ 22-В
Левицкий П.В.
Проверил:_______________________
Севастополь 2008
ПЛАН
1. Данные варианта задания.
2. Решение дифференциального уравнения N-го порядка
2.1. Решение дифференциальных уравнений N-го порядка методом интегрирования при помощи характеристического уравнения:
· при y(t) = 0 и заданных начальных условиях ;
· при y(t) = 1(t) и нулевых начальных условиях;
· при y(t) = 1(t) и заданных начальных условиях;
· при y(t) = cos(aּπּt) и нулевых начальных условиях;
2.2. Решение дифференциальных уравнений N-го порядка операторным методом:
· при y(t) = 0 и заданных начальных условиях;
· при y(t) = 1(t) и нулевых начальных условиях;
· при y(t) = 1(t) и заданных начальных условиях;
· при y(t) = cos(aּπּt) и нулевых начальных условиях;
1. Данные варианта задания
ПРИЛОЖЕНИЕ №1
( к практическому занятию №3)
Дифференциальное уравнения 4-го порядка
Т а б л и ц а № 1
№ вар | Коэффициенты дифференциального уравнения 4–го порядка | Правая часть уравнения и начальные условия | ||||||
а0 | а1 | а2 | а3 | а4 | b0 | y(t) = 1(t) x0(0) = 1 x1(0) = x2(0)= x3(0) = 0 | y(t) = cos(aּπּt) x0(0) = -1 x1(0) = x2(0)= x3(0) = 0 | |
8 | 10 | 20 | 1.7 | 0.16 | 0.08 | 10 | a = 0.35 |
2. Решение дифференциального уравнения N-го порядка
2.1 Решение дифференциальных уравнений N-го порядка методом интегрирования при помощи характеристического уравнения
2.1.1 При y(t) = 0 и заданных начальных условиях
Дифференциальное уравнение 4-го порядка, описывающее динамические процессы электротехнической системы имеет вид:
Водим уравнение, пользуясь панелью «Исчисления» в Mathcad.
При заданных по условию значениях коэффициентов, уравнение примет вид:
Данное линейное дифференциальное уравнения 4-го порядка преобразуем
в систему дифференциальных уравнений первого порядка (в нормальную форму Коши). Обозначим:
Зададим вектор начальных значений:
СПРАВКА: В Mathcad 11 имеются три встроенные функции, которые позволяют решать поставленную в форме (2—3) задачу Коши различными численными методами.
· rkfixed(y0, t0, t1, M, D) — метод Рунге-Кутты с фиксированным шагом,
· Rkadapt(y0, t0, t1, M, D) — метод Рунге-Кутты с переменным шагом;
· Buistoer(y0, t0, t1, M, D) — метод Булирша-Штера;
o у0 — вектор начальных значений в точке to размера NXI;
o t0 — начальная точка расчета,
o t1 — конечная точка расчета,
o M — число шагов, на которых численный метод находит решение;
o D — векторная функция размера NXI двух аргументов — скалярного t и векторного у При этом у — искомая векторная функция аргумента t того же размера NXI.
Таким образом, воспользуемся функцией rkfixed(y0, t0, t1, M, D) -получим матрицу решения системы обыкновенных дифференциальных уравнений численным методом Рунге-Кута на интервале от t0 до t1 при M фиксированных шагах решения и правыми частями уравнений, записанными в D. Тогда решение уравнения динамики электротехнической системы с помощью встроенной функции rkfixed выглядит так:
Зададим интервал интегрирования t0 - t1, количество шагов интегрирования М, вектор заданных начальных условий ic и правую часть дифференциального уравнения y(t):
Сформируем матрицу системы дифференциальных уравнений, соответствующую заданному дифференциальному уравнению 4-го порядка.
Применим функцию:
-Интервал времени.
-Значение искомой координаты.
Рисунок1. Матрица решений системы уравнений.
По этой таблице можно определять расчётные значения исходного вектора на заданном шаге.
Результаты численного решения дифференциального уравнения можно вывести в виде таблицы с прокруткой времени и искомой неизвестной (см файл в Mathcad). Согласно выбранному М получили 1500 строк.
Рисунок2. Результаты пошагового решения дифференциального уравнения, представленные в виде таблицы.
Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат представлено на рисунке 3. График изображён так, что можно проверить значения строки 1500. При Т=150, Х=4,563*10^130
Рисунок 3. Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат. При y(t) = 0 и заданных начальных условиях.
... мы будем определять аналитические зависимости изменения переменных состояния системы численными методами с использованием переходной матрицы, а также с помощью специальных функций MATHCAD. 2.2 Теоретическое обоснование применения преобразования Лапласа Классический метод решения системы дифференциальных уравнений высокого порядка связан с большими вычислительными затратами, особенно при ...
... 1. № п/п U, В R, Ом Rд, Ом L, Гн iтр, А Вариант10 220 950 950 75 0,095 Динамика срабатывания электромагнита постоянного тока. Процесс срабатывания электромагнитов имеет динамических характер. Чтобы охарактеризовать динамический режим работы электромагнита, необходимо иметь зависимость изменения тока в обмотке и пути, пройденного якорем от времени. Время срабатывания ...
... - в группе переменных, «зажатых в кулак», но этот «кулак», как мы уже отмечали, легко разжать, выводя на дисплей найденные значения с «первородной» размерностью массы (kg), длины (m) и времени (sec): пакет MathCAD «разжимает» и сам вектор, м составные размерности, приписывая к числам комбинации основных физических единиц. Но не только этим хороша размерность в задачах. Главное то , что она ...
... , которая состоялась 22 февраля 1995 года, обсуждался ход реализации программы информатизации образования на 1994-1995 гг. Был рассмотрен вопрос о совершенствовании организации обучения информатике в общеобразовательной школе на современном этапе. Коллегия постановила признать целесообразной необходимость выделения нескольких этапов в овладении основами информатики и формировании информационной ...
0 комментариев