1.1 Приведение к нормальной форме Коши

Нормальной формой Коши принято называть общую форму записи ОДУ, то есть представление в виде системы  дифференциальных уравнений первого порядка:

 (1)

ДУ второго порядка, заданное согласно варианту №3 имеет вид:

(2)

Задание предполагает нахождение решения  на интервале  при следующих начальных условиях:

 (3)

Для решения ДУ его просто необходимо представить согласно нормальной формы Коши. Для этого руководствуемся следующими обозначениями:

 (4)

В итоге имеется система ДУ первого порядка вида:

 (5)

Произведя все вышеописанные манипуляции над заданным в варианте уравнением, получим следующую систему:

 (6)

Система (6) есть решение уравнения (2).


1.2 Метод Рунге-Кутты второго порядка

В методах Рунге-Кутты интеграл заменяется линейной комбинацией значений подынтегральной функции, вычисленных при разных значениях аргумента:

 (7)

Метод Рунге-Кутты представим в виде:


(8)

Из вышеуказанных общих формул (8) получают формулы метода Рунге-Кутты 2-ого порядка m=2;

(9)

Для определения метода необходимо найти значения вещественных коэффициентов: . Для этого интеграл, заменяемый линейной комбинацией значений подынтегральной функции, вычисленных при разных значениях аргумента, можно представить как:

(10)

А его, в свою очередь, можно представить рядом Тейлора:

(11)

где - сумма элементов ряда Тейлора, степень которых не ниже 3.

Осталось найти неизвестные значения

(12)

В результате таких бесхитростных манипуляций получаем искомый ряд Тейлора:

(13)

Приравняем коэффициенты при одинаковых степенях  в выражениях

(11) и (13). В итоге получим систему уравнений вида:

(14)

Из свойств системы (14) следует отметить, что она не обладает единственным решением. При  значение , значение , а (15)

Подставив полученные коэффициенты в соотношение (8), получаем следующие формулы метода Рунге-Кутты 2-ого порядка:

  (16)


2 ОПИСАНИЕ ПРОГРАММНЫХ МОДУЛЕЙ

Составленная в ходе курсовой работы программа вычисляет решения дифференциального уравнения, с предварительно заданными начальными условиями. Интегрирование происходит согласно двум методам: Рунге-Кутты второго и четвертого порядков.

Программа состоит из следующих модулей:

1)         Основная программа;

2)         Процедура вычисления точного решения ДУ;

3)         Процедура вычисления правых частей;

4)         Процедура выполняющая шаг интегрирования методом Рунге-Кутты 2-ого порядка;

5)         Процедура выполняющая шаг интегрирования методом Рунге-Кутты 4-ого порядка.

 


Информация о работе «Экспериментальное исследование свойств методов Рунге-Кутты»
Раздел: Информатика, программирование
Количество знаков с пробелами: 24984
Количество таблиц: 1
Количество изображений: 11

Похожие работы

Скачать
38687
3
48

... 35437 x4=0.58554 5 x1=1.3179137 x2=-1.59467 x3=0.35371 x4=0.58462 6 x1=1.3181515 x2=-1.59506 x3=0.35455 x4=0.58557 5. Сравнительный анализ различных методов численного дифференцирования и интегрирования 5.1 Методы численного дифференцирования 5.1.1 Описание метода Предположим, что в окрестности точки xiфункция F (x) дифференцируема достаточное число раз. ...

Скачать
28541
0
2

... целесообразной также и автоматизация самого процесса получения экспериментальных данных. В следующей главе будет рассмотрена аппаратная часть комплекса для кинетических измерений. ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ КИНЕТИКИ БЫСТРЫХ РЕАКЦИЙ В РАСТВОРЕ   Среди различных способов изучения кинетики быстрых реакций выделяется группа методов, отличающаяся некоторыми общими особенностями ...

Скачать
100779
18
23

... (5.16) Непосредственное использование оценок погрешности (5.4), (5.8) и (5.12) неудобно, так как при этом требуется вычисление производных функции f(x). В вычислительной практике используются другие оценки. Вычтем из равенства (5.15) равенство (5.16): Ih/2 – Ih » Chk(2k – 1). (5.17) Учитывая приближенное равенство (5.16), получим следующее приближенное ...

Скачать
79426
0
0

... *  0─────── 7 8 0 t (1.2.18)  7a 9  0  7a 0  70  0  7 9 0  7 a  0  7 0 Для создания демонстрационной программы удобнее использовать  формулу не для x , а для  7D 0x , 1  7{ 0  7b  0+  7g  0  7}{  0  4- 7a 4t 0  7} 0  7 b  0+ 7 g   7D 0x=x-x 40 0= ───  72  0V 40  0- ───── ...

0 комментариев


Наверх