1. Целевая функция может включать в себя более одного критерия.
2. Для целевой функции всегда и обязательно указывается вид экстремума:
Различают два вида задач оптимизации:
o Задачу минимизации.
o Задачу максимизации.
Чтобы решить задачу минимизации функции на множестве, необходимо найти такой вектор ( а также соответствующее значение целевой функции), чтобы неравенство: выполнялось для всех. При этом называют оптимальным решением (точнее здесь – минимальным решением), а - оптимумом (минимумом).
Чтобы решить задачу максимизации функции на множестве, необходимо найти такой вектор (а также соответствующее значение целевой функции), чтобы неравенство: выполнялось для всех. При этом называют оптимальным (максимальным ) решением, а– оптимумом ( максимумом ).
В общем виде находится именно вектор , т.к., например, при решении двухпараметрической задачи, он будет включать в себя два параметра, трехпараметрической – три параметра и т.д.
2.3 Решение Диофантова уравнения
Рассмотрим Диофантово (только целые решения) уравнение: a+2b+3c+4d=30, где a, b, c и d - некоторые положительные целые. Применение ГА за очень короткое время находит искомое решение (a, b, c, d).
Конечно, Вы можете спросить: почему бы не использовать метод грубой силы: просто не подставить все возможные значения a, b, c, d (очевидно, 1 <= a,b,c,d <= 30) ?
Архитектура ГА-систем позволяет найти решение быстрее за счет более 'осмысленного' перебора. Мы не перебираем все подряд, но приближаемся от случайно выбранных решений к лучшим.
Для начала выберем 5 случайных решений: 1 =< a,b,c,d =< 30. Вообще говоря, мы можем использовать меньшее ограничение для b,c,d, но для упрощения пусть будет 30.
Хромосома | (a,b,c,d) |
1 | (1,28,15,3) |
2 | (14,9,2,4) |
3 | (13,5,7,3) |
4 | (23,8,16,19) |
5 | (9,13,5,2) |
Таблица 1: 1-е поколение хромосом и их содержимое
Чтобы вычислить коэффициенты выживаемости (fitness), подставим каждое решение в выражение a+2b+3c+4d. Расстояние от полученного значения до 30 и будет нужным значением.
Хромосома | Коэффициент выживаемости |
1 | |114-30|=84 |
2 | |54-30|=24 |
3 | |56-30|=26 |
4 | |163-30|=133 |
5 | |58-30|=28 |
Таблица 2: Коэффициенты выживаемости первого поколения хромосом (набора решений)
Так как меньшие значения ближе к 30, то они более желательны. В нашем случае большие численные значения коэффициентов выживаемости подходят, увы, меньше. Чтобы создать систему, где хромосомы с более подходящими значениями имеют большие шансы оказаться родителями, мы должны вычислить, с какой вероятностью (в %) может быть выбрана каждая. Одно решение заключается в том, чтобы взять сумму обратных значений коэффициентов, и исходя из этого вычислять проценты. (Заметим, что все решения были сгенерированы Генератором Случайных Чисел - ГСЧ)
Хромосома | Подходимость |
1 | (1/84)/0.135266 = 8.80% |
2 | (1/24)/0.135266 = 30.8% |
3 | (1/26)/0.135266 = 28.4% |
4 | (1/133)/0.135266 = 5.56% |
5 | (1/28)/0.135266 = 26.4% |
Таблица 3: Вероятность оказаться родителем
Для выбора 5-и пар родителей (каждая из которых будет иметь 1 потомка, всего - 5 новых решений), представим, что у нас есть 10000-стонняя игральная кость, на 880 сторонах отмечена хромосома 1, на 3080 - хромосома 2, на 2640 сторонах - хромосома 3, на 556 - хромосома 4 и на 2640 сторонах отмечена хромосома 5. Чтобы выбрать первую пару, кидаем кость два раза и выбираем выпавшие хромосомы. Таким же образом выбирая остальных, получаем:
Хромосома отца | Хромосома матери |
3 | 1 |
5 | 2 |
3 | 5 |
2 | 5 |
5 | 3 |
Таблица 4: Симуляция выбора родителей
Каждый потомок содержит информацию о генах и отца и от матери. Вообще говоря, это можно обеспечить различными способами, однако в нашем случае можно использовать т.н. "кроссовер" (cross-over). Пусть мать содержит следующий набор решений: a1,b1,c1,d1, а отец - a2,b2,c2,d2, тогда возможно 6 различных кросс-оверов (| = разделительная линия):
Хромосома-отец | Хромосома-мать | Хромосома-потомок |
a1 | b1,c1,d1 | a2 | b2,c2,d2 | a1,b2,c2,d2 or a2,b1,c1,d1 |
a1,b1 | c1,d1 | a2,b2 | c2,d2 | a1,b1,c2,d2 or a2,b2,c1,d1 |
a1,b1,c1 | d1 | a2,b2,c2 | d2 | a1,b1,c1,d2 or a2,b2,c2,d1 |
Таблица 5: Кросс-оверы между родителями
Есть достаточно много путей передачи информации потомку, и кросс-овер - только один из них. Расположение разделителя может быть абсолютно произвольным, как и то, отец или мать будут слева от черты.
А теперь попробуем проделать это с нашими потомками
Хромосома-отец | Хромосома-мать | Хромосома-потомок |
(13 | 5,7,3) | (1 | 28,15,3) | (13,28,15,3) |
(9,13 | 5,2) | (14,9 | 2,4) | (9,13,2,4) |
(13,5,7 | 3) | (9,13,5 | 2) | (13,5,7,2) |
(14 | 9,2,4) | (9 | 13,5,2) | (14,13,5,2) |
(13,5 | 7, 3) | (9,13 | 5, 2) | (13,5,5,2) |
Таблица 6: Симуляция кросс-оверов хромосом родителей
Теперь мы можем вычислить коэффициенты выживаемости (fitness) потомков.
Хромосома-потомок | Коэффициент выживаемости |
(13,28,15,3) | |126-30|=96 |
(9,13,2,4) | |57-30|=27 |
(13,5,7,2) | |57-30|=22 |
(14,13,5,2) | |63-30|=33 |
(13,5,5,2) | |46-30|=16 |
Таблица 7: Коэффициенты выживаемости потомков (fitness)
Средняя приспособленность (fitness) потомков оказалась 38.8, в то время как у родителей этот коэффициент равнялся 59.4. Следующее поколение может мутировать. Например, мы можем заменить одно из значений какой-нибудь хромосомы на случайное целое от 1 до 30. Продолжая, таким образом, одна хромосома, в конце концов, достигнет коэффициента выживаемости 0, то есть станет решением. Системы с большей популяцией (например, 50 вместо 5-и) сходятся к желаемому уровню (0) более быстро и стабильно.
... число эпох функционирования алгоритма, или определение его сходимости, обычно путем сравнивания приспособленности популяции на нескольких эпохах и остановки при стабилизации этого параметра. 3. Непрерывные генетические алгоритмы. Фиксированная длина хромосомы и кодирование строк двоичным алфавитом преобладали в теории генетических алгоритмов с момента начала ее развития, когда были получены ...
... в популяциях, которые являются существенными для развития. Точный ответ на вопрос: какие биологические процессы существенны для развития, и какие нет? - все еще открыт для исследователей. Реализация генетических алгоритмов В природе особи в популяции конкурируют друг с другом за различные ресурсы, такие, например, как пища или вода. Кроме того, члены популяции одного вида часто конкурируют ...
... N строк. Для популяции вводится понятие средней ценности популяции Fср (G(t)): Аналогично для подпопуляции GH(t), удовлетворяющей схеме H, вводится понятие средней ценности подпопуляции Fср (GH(t)):. Генетический алгоритм осуществляет переход от популяции G(t) к популяции G(t+1) таким образом, чтобы средняя ценность составляющих её строк увеличивалась, причём количество новых строк в популяции ...
... решения Скрещивание, рекомбинация, кроссинговер Оператор рекомбинации мутация Оператор модификации При разработке генетических алгоритмов преследуется две главные цели: · Абстрактное и формальное объяснение процессов адаптации в естественных системах; · Проектирование искусственных программных систем, воспроизводящих механизмы функционирования естественных систем. Основные отличия ГА от ...
0 комментариев