1.            Целевая функция может включать в себя более одного критерия.

2.            Для целевой функции всегда и обязательно указывается вид экстремума:

Различают два вида задач оптимизации:

o Задачу минимизации.

o Задачу максимизации.

Чтобы решить задачу минимизации функции на множестве, необходимо найти такой вектор ( а также соответствующее значение целевой функции), чтобы неравенство: выполнялось для всех. При этом называют оптимальным решением (точнее здесь – минимальным решением), а - оптимумом (минимумом).

Чтобы решить задачу максимизации функции на множестве, необходимо найти такой вектор (а также соответствующее значение целевой функции), чтобы неравенство: выполнялось для всех. При этом называют оптимальным (максимальным ) решением, а– оптимумом ( максимумом ).

В общем виде находится именно вектор , т.к., например, при решении двухпараметрической задачи, он будет включать в себя два параметра, трехпараметрической – три параметра и т.д.

2.3 Решение Диофантова уравнения

Рассмотрим Диофантово (только целые решения) уравнение: a+2b+3c+4d=30, где a, b, c и d - некоторые положительные целые. Применение ГА за очень короткое время находит искомое решение (a, b, c, d).

Конечно, Вы можете спросить: почему бы не использовать метод грубой силы: просто не подставить все возможные значения a, b, c, d (очевидно, 1 <= a,b,c,d <= 30) ?

Архитектура ГА-систем позволяет найти решение быстрее за счет более 'осмысленного' перебора. Мы не перебираем все подряд, но приближаемся от случайно выбранных решений к лучшим.

Для начала выберем 5 случайных решений: 1 =< a,b,c,d =< 30. Вообще говоря, мы можем использовать меньшее ограничение для b,c,d, но для упрощения пусть будет 30.

Хромосома (a,b,c,d)
1 (1,28,15,3)
2 (14,9,2,4)
3 (13,5,7,3)
4 (23,8,16,19)
5 (9,13,5,2)

Таблица 1: 1-е поколение хромосом и их содержимое

Чтобы вычислить коэффициенты выживаемости (fitness), подставим каждое решение в выражение a+2b+3c+4d. Расстояние от полученного значения до 30 и будет нужным значением.

Хромосома Коэффициент выживаемости
1 |114-30|=84
2 |54-30|=24
3 |56-30|=26
4 |163-30|=133
5 |58-30|=28

Таблица 2: Коэффициенты выживаемости первого поколения хромосом (набора решений)

Так как меньшие значения ближе к 30, то они более желательны. В нашем случае большие численные значения коэффициентов выживаемости подходят, увы, меньше. Чтобы создать систему, где хромосомы с более подходящими значениями имеют большие шансы оказаться родителями, мы должны вычислить, с какой вероятностью (в %) может быть выбрана каждая. Одно решение заключается в том, чтобы взять сумму обратных значений коэффициентов, и исходя из этого вычислять проценты. (Заметим, что все решения были сгенерированы Генератором Случайных Чисел - ГСЧ)


Хромосома Подходимость
1 (1/84)/0.135266 = 8.80%
2 (1/24)/0.135266 = 30.8%
3 (1/26)/0.135266 = 28.4%
4 (1/133)/0.135266 = 5.56%
5 (1/28)/0.135266 = 26.4%

Таблица 3: Вероятность оказаться родителем

Для выбора 5-и пар родителей (каждая из которых будет иметь 1 потомка, всего - 5 новых решений), представим, что у нас есть 10000-стонняя игральная кость, на 880 сторонах отмечена хромосома 1, на 3080 - хромосома 2, на 2640 сторонах - хромосома 3, на 556 - хромосома 4 и на 2640 сторонах отмечена хромосома 5. Чтобы выбрать первую пару, кидаем кость два раза и выбираем выпавшие хромосомы. Таким же образом выбирая остальных, получаем:

Хромосома отца Хромосома матери
3 1
5 2
3 5
2 5
5 3

Таблица 4: Симуляция выбора родителей

Каждый потомок содержит информацию о генах и отца и от матери. Вообще говоря, это можно обеспечить различными способами, однако в нашем случае можно использовать т.н. "кроссовер" (cross-over). Пусть мать содержит следующий набор решений: a1,b1,c1,d1, а отец - a2,b2,c2,d2, тогда возможно 6 различных кросс-оверов (| = разделительная линия):

Хромосома-отец Хромосома-мать Хромосома-потомок
a1 | b1,c1,d1 a2 | b2,c2,d2 a1,b2,c2,d2 or a2,b1,c1,d1
a1,b1 | c1,d1 a2,b2 | c2,d2 a1,b1,c2,d2 or a2,b2,c1,d1
a1,b1,c1 | d1 a2,b2,c2 | d2 a1,b1,c1,d2 or a2,b2,c2,d1

Таблица 5: Кросс-оверы между родителями

Есть достаточно много путей передачи информации потомку, и кросс-овер - только один из них. Расположение разделителя может быть абсолютно произвольным, как и то, отец или мать будут слева от черты.

А теперь попробуем проделать это с нашими потомками

Хромосома-отец Хромосома-мать Хромосома-потомок
(13 | 5,7,3) (1 | 28,15,3) (13,28,15,3)
(9,13 | 5,2) (14,9 | 2,4) (9,13,2,4)
(13,5,7 | 3) (9,13,5 | 2) (13,5,7,2)
(14 | 9,2,4) (9 | 13,5,2) (14,13,5,2)
(13,5 | 7, 3) (9,13 | 5, 2) (13,5,5,2)

Таблица 6: Симуляция кросс-оверов хромосом родителей

Теперь мы можем вычислить коэффициенты выживаемости (fitness) потомков.

Хромосома-потомок Коэффициент выживаемости
(13,28,15,3) |126-30|=96
(9,13,2,4) |57-30|=27
(13,5,7,2) |57-30|=22
(14,13,5,2) |63-30|=33
(13,5,5,2) |46-30|=16

Таблица 7: Коэффициенты выживаемости потомков (fitness)

Средняя приспособленность (fitness) потомков оказалась 38.8, в то время как у родителей этот коэффициент равнялся 59.4. Следующее поколение может мутировать. Например, мы можем заменить одно из значений какой-нибудь хромосомы на случайное целое от 1 до 30. Продолжая, таким образом, одна хромосома, в конце концов, достигнет коэффициента выживаемости 0, то есть станет решением. Системы с большей популяцией (например, 50 вместо 5-и) сходятся к желаемому уровню (0) более быстро и стабильно.


Информация о работе «Генетические алгоритмы»
Раздел: Информатика, программирование
Количество знаков с пробелами: 43393
Количество таблиц: 24
Количество изображений: 4

Похожие работы

Скачать
33080
5
4

... число эпох функционирования алгоритма, или определение его сходимости, обычно путем сравнивания приспособленности популяции на нескольких эпохах и остановки при стабилизации этого параметра. 3. Непрерывные генетические алгоритмы. Фиксированная длина хромосомы и кодирование строк двоичным алфавитом преобладали в теории генетических алгоритмов с момента начала ее развития, когда были получены ...

Скачать
53143
0
0

... в популяциях, которые являются существенными для развития. Точный ответ на вопрос: какие биологические процессы существенны для развития, и какие нет? - все еще открыт для исследователей. Реализация генетических алгоритмов В природе особи в популяции конкурируют друг с другом за различные ресурсы, такие, например, как пища или вода. Кроме того, члены популяции одного вида часто конкурируют ...

Скачать
13849
0
3

... N строк. Для популяции вводится понятие средней ценности популяции Fср (G(t)): Аналогично для подпопуляции GH(t), удовлетворяющей схеме H, вводится понятие средней ценности подпопуляции Fср (GH(t)):. Генетический алгоритм осуществляет переход от популяции G(t) к популяции G(t+1) таким образом, чтобы средняя ценность составляющих её строк увеличивалась, причём количество новых строк в популяции ...

Скачать
16855
1
0

... решения Скрещивание, рекомбинация, кроссинговер Оператор рекомбинации мутация Оператор модификации При разработке генетических алгоритмов преследуется две главные цели: · Абстрактное и формальное объяснение процессов адаптации в естественных системах; · Проектирование искусственных программных систем, воспроизводящих механизмы функционирования естественных систем. Основные отличия ГА от ...

0 комментариев


Наверх