3.1 Обоснование выбора программного обеспечения

 

В последнее время резко возрос интерес к программированию. Это свя­зано с развитием и внедрением в повседневную жизнь информационно-коммуникационных технологий. Если человек имеет дело с компьютером, то рано или поздно у него возникает желание, а иногда и необходимость, программировать.

Среди пользователей персональных компьютеров в настоящее время наибо­лее популярно семейство операционных систем Windows и, естественно, что тот, кто собирается программировать, стремится писать программы, кото­рые будут работать в этих системах.

Интерактивность – сегодня наиболее важное, мы бы сказали основное

 условие для создаваемых приложений. Наиболее полный стандарт, который гарантирует данное условие, стал всем известный Action Script для Flash. Сравнительно недавно он превратился из простого языка подготовки сценариев в полноценную объектно-ориентированную среду программирования.

Как вы помните, нашей целью является создание электронного пособия, которое позволило бы достаточно понятно и просто донести до читателя основные понятия и принципы организации генетического алгоритма. Action Script предоставляет прекрасную возможность, организовать красочный, доступный интерфейс и навигацию. И еще один неоспоримый плюс при создании учебника на Action Script: использование готового продукта, как самостоятельную программу (публикация готового продукта с exe расширением).


3.2 Описание программной реализации

Для начала, мы подготовили материал, который будет представлен в нашем пособии. Определились со структурой и дизайном, и только после этого началось непосредственно создание нашего продукта.

Мы использовали, как было упомянуто выше, Macromedia Flash MX2004. Алгоритм создания следующий:

1.            Создаем новый Flash документ.

2.            Прорабатываем дизайн нашего пособия (установка фона, шрифта)

3.            Размещаем подготовленный нами материал на кадрах, предварительно вставив на каждом их них ключевой кадр.

4.            Организация навигации.

5.            Проверка и публикация созданного документа в exe формате.

Распишем подробнее некоторые пункты.

Размещение материала было сформировано наподобие обычной книги с заглавием, содержанием и возможностью перелистывания страниц.

 

Содержание Навигация (перелистывание страниц)


Что касается навигации и непосредственно программирования на языке Action Script, тут тоже не возникло ни каких проблем. Сама программа пишется в окне Action, при выделение объекта, но который пишутся действия.

Flash Action Script действует по следующему сценарию:

o    сценарий Action Script настраивается на обнаружение определенного события.

o    Как только событие происходит, выполняется обрабатывающий это событие набор инструкций Action Script.

На каждый кадр (страницу нашего пособия) пишется определенная заготовка:

stop ();

// останавливает автоматическое проигрывание кадров.

- На каждую кнопку пишется другая заготовка:

on (release) {

gotoAndStop (“Scene 1”, 2);

}

// Итак, поясним эту несложную конструкцию. другими словами первая строка будет выглядеть так: при (отпускании) {выполнить это…}. Команда gotoAndStop позволяет нам перейти на второй кадр первой сцены и остановиться.

Еще одно небольшое замечание, необходимо преобразовать нарисованную или вставленную из библиотеки кнопку в символ. Для этого выделяем наш объект правой кнопкой, и выбираем в контекстном меню Convert, в появившемся меню ставим галочку напротив Button.

Во Flash мы на каждом шаге можем проверять (отлаживать) нашу разработку, для этого в главном меню выбираем Control/Test movie.

И, наконец, на последнем шаге мы публикуем наше пособие в exe формате, для того, чтоб наша разработка запускалась на компьютере любого пользователя, в не зависимости от того, установлена на его компьютере Flash или нет.


Заключение

 

Мы с вами проделали большой путь, открывая для себя генетические алгоритмы, их, казалось бы, тривиальную и одновременно с этим гениальную идею, взятую из природы. В ходе изучения мы многократно указывали на достоинства и недостатки генетических алгоритмов. Среди наиболее значимых положительных сторон, можно отметить:

Первый случай: когда не известен способ точного решения задачи. Если мы знаем, как оценить приспособленность хромосом, то всегда можем заставить генетический алгоритм решать эту задачу.

Второй случай: когда способ для точного решения существует, но он очень сложен в реализации, требует больших затрат времени и денег, то есть, попросту говоря, дело того не стоит. Пример - создание программы для составления персонального расписания на основе техники покрытия множеств с использованием линейного программирования.

Что же касается недостатков, то в общем случае генетические алгоритмы не находят оптимального решения очень трудных задач. Если оптимальное решение задачи (например, задача коммивояжера с очень большим числом городов) не может быть найдено традиционными способами, то и генетический алгоритм вряд ли найдет оптимум

Наряду с генетическими алгоритмами известны и другие методы решения задач оптимизации, основанные на природных механизмах, такие как моделирование отжига (simulated annealing) и табу-поиск (taboo search). Но эффект случайности, который безусловно присутствует при решении генетическим алгоритмом, очень воодушевляет.

Несмотря на небольшое количество задач, которое мы с вами рассмотрели: решение Диофантова уравнения и задачу коммивояжера, мы полностью подтверждаем нашу гипотезу. Задачи оптимизации (и не только) успешно решаются при помощи генетических алгоритмов.


Библиография

1.         Вентцель Е.С. «Исследование операций», - М.: 1972 г.

2.         Гальцына О.Л., Попов И.И. «Основы алгоритмизации и программирования».

3.         Грешилов А.А. «Как принять наилучшее решение в реальных условиях», - М.: 1991 г., стр. 164-170

4.         Корнеев В.В., Гареев А.Ф. «Базы данных. Интеллектуальная обработка данных», М.: 2001г., стр. 220

5.         Коршунов Ю.М. «Математические основы кибернетики. Для студентов вузов», - М.: 1987 г., стр. 67-89

6.         Леонов О.И. «Теория графов».

7.         Майника Э., «Алгоритмы оптимизации на сетях и графах.» - М.: 1981

8.         Новиков Ф.А. «Дискретная математика для программистов».

9.         «Генетические алгоритмы: почему они работают?»/ Компьютерра, № 11, 1999 год

10.      Де Джонг К. А. Введение ко второму специальному выпуску по
генетическим алгоритмам. Машинное обучение, №5(4), с. 351-353

11.      Электронные источники:

12.      «Генетические алгоритмы по-русски» - http://www.chat.ru/~saisa

13.      «Нейропроект. Аналитические технологии XXI века» - http://www.neuroproject.ru

14.      «Научное издательство ТВП» - http://www.tvp.ru/mathem3.htm

15.      «Факультет вычислительной математики и кибернетики МГУ (ВМиК)» - http://cmc.cs.msu.su/labs/lvk/materials/tez_sapr99_1.html

16.      «Neural Bench Development» - http://www.neuralbench.ru/rus/theory/genetic.htm

17.      «Журнал "Автоматизация Проектирования"» - http://www.opensystems.ru/ap/1999/01/08.htm

18.      «(EHIPS) Генетические алгоритмы» - http://www.iki.rssi.ru/ehips/genetic.htm

19.      «SENN Генетические Алгоритмы» - http://fdmhi.mega.ru/ru/senn_ga.htm

20.      Хорева Е.В. Курсовая работа. Тема «Применение генетических алгоритмов для решения задач оптимизации»-КГПУ.: 2007г.

21.      «Лекции по нейронным сетям и генетическим алгоритмам» - http://infoart.baku.az/inews/30000007.htm


Информация о работе «Генетические алгоритмы»
Раздел: Информатика, программирование
Количество знаков с пробелами: 43393
Количество таблиц: 24
Количество изображений: 4

Похожие работы

Скачать
33080
5
4

... число эпох функционирования алгоритма, или определение его сходимости, обычно путем сравнивания приспособленности популяции на нескольких эпохах и остановки при стабилизации этого параметра. 3. Непрерывные генетические алгоритмы. Фиксированная длина хромосомы и кодирование строк двоичным алфавитом преобладали в теории генетических алгоритмов с момента начала ее развития, когда были получены ...

Скачать
53143
0
0

... в популяциях, которые являются существенными для развития. Точный ответ на вопрос: какие биологические процессы существенны для развития, и какие нет? - все еще открыт для исследователей. Реализация генетических алгоритмов В природе особи в популяции конкурируют друг с другом за различные ресурсы, такие, например, как пища или вода. Кроме того, члены популяции одного вида часто конкурируют ...

Скачать
13849
0
3

... N строк. Для популяции вводится понятие средней ценности популяции Fср (G(t)): Аналогично для подпопуляции GH(t), удовлетворяющей схеме H, вводится понятие средней ценности подпопуляции Fср (GH(t)):. Генетический алгоритм осуществляет переход от популяции G(t) к популяции G(t+1) таким образом, чтобы средняя ценность составляющих её строк увеличивалась, причём количество новых строк в популяции ...

Скачать
16855
1
0

... решения Скрещивание, рекомбинация, кроссинговер Оператор рекомбинации мутация Оператор модификации При разработке генетических алгоритмов преследуется две главные цели: · Абстрактное и формальное объяснение процессов адаптации в естественных системах; · Проектирование искусственных программных систем, воспроизводящих механизмы функционирования естественных систем. Основные отличия ГА от ...

0 комментариев


Наверх