3.2.7 Уточненный тепловой расчет теплообменника
Скорость движения обводненного растворителя в межтрубном пространстве определяем по формуле :
ωP = (3.37.)
где м2 – площадь проходного сечения по межтрубному пространству
кг/м3 – плотность обводненного растворителя
ωP= м/с
Критерий Рейнольдса : Rep =, (3.38.)
где γ = 0,364∙10-6 м2∙с - кинематическая вязкость обводненного растворителя.
Rер
Критерий Прандтля.
Рr = , где Вт/м∙К – теплопроводность обводненного растворителя
Рr =
Коэффициент теплопередачи к обводненному растворителю
=
= Вт/м2∙К
Коэффициент теплопередачи от конденсирующего пара, согласно [6],
= 10000 Вт/м2∙К
Коэффициент теплопередачи определяем по формуле :
К= , где (3.39.)
Где λ =46 Вт/м∙К – теплопроводность углеродистой стали
- термическое сопротивление обводненного растворителя
- термическое сопротивление со стороны пара (конденсата)
Тогда К= Вт/м2К
Требуемая поверхность теплообменника составляет :
F= F=м2
Согласно [6] следует, что подходит кожухотрубчатый теплообменник с U-образными трубками длиной L=2,0 м и номинальной поверхностью =12,5 м2 .
При этом запас Δ==25%
3.3. Прочностной расчет основных элементов оборудования
3.3.1 Расчет ректификационной колонны
3.3.1.1 Целью расчета является определение толщины стенки обечайки корпуса аппарата, работающего под внутренним давлением.
3.3.1.2 Исходные данные для расчета
- внутренний диаметр обечайки D=0,5 м
- рабочая температура Т=100˚С
- рабочее давление Р= 0,02 МПа
- материал обечайки сталь ВСт3сп
3.3.1.3 Расчет обечайки аппарата
Толщина обечайки корпуса аппарата определяется из условия прочности и устойчивости. Расчет ведем согласно [7],
Исполнительная толщина обечайки аппарата
S≥Sp+С(3.40.)
Где Sp – расчетная толщина обечайки , м;
С=С1+С2+С3 – суммарная прибавка к расчетной толщине стенки, м;
С1= 0,002м – прибавка для компенсации коррозии и эрозии.
С2= С3=0 – прибавка для компенсации минусового допуска и технологического допуска соответственно.
Расчетная толщина обечайки аппарата определяется по формуле :
Sp = , где φ =1 – коэффициент прочности сварного шва (3.41.)
[σ] = 149 МПа – допускаемое напряжение для стали ВСт3сп при t=100˚C
Sp =
S ≥ 0,0011+0,002 = 0,0032 м
Принимаем толщину стенки обечайки S=5 мм
Пробное давление определяем по формуле :
Рпр = 1,25∙р∙, (3.42.)
где [σ]20 = 154 МПа – допускаемое напряжение для стали
ВСт3сп при t=20˚C
Рпр = 1,25∙0,02∙ МПа.
Давление при гидроиспытании определяем по формуле :
Рг.u= Рпр +Pг , где Pг = =1000∙9,81∙9,5=0,09 МПа (3.43.)
Рг.u=0,08+0,09=0,17 МПа
Проверяем выполнение условия :
Рг.u< P∙1,35 Рг.u < 0,02∙1,35 МПа 1,02>0,028 (3.44)
Условие не выполняется, следовательно нужно производить расчет при гидроиспытании.
Толщина стенки обечайки при гидроиспытании определяется по формуле:
Sp1 =, (3.45.)
где - допускаемое напряжение при гидроиспытании. (3.46.)
МПа – предел текучести для стали ВСт3сп при t = 20˚C
МПа, тогда Sp1 =
S≥0,0013+0,002=0,0033 м
Исходя из конструктивных соображений принимаем толщину стенки обечайки S=0,009 м, так как обечайка изготавливается из трубы ø529x9 мм.
Проверяем выполнение условия устойчивости обечайки по формуле:
где F – осевая сжимающая сила МН; (3.47.)
- допускаемая осевая сжимающая сила, МН;
М – изгибающий момент, действующий на колонну от ветра МН∙м;
- допускаемый изгибающий момент от ветровой нагрузки, МН∙м;
Допускаемая осевая сжимающая сила рассчитывается по формуле :
, (3.48)
где - допускаемая осевая сжимающая сила из условия
прочности, МН; (3.49.)
-допускаемая осевая сжимающая сила из условия устойчивости Мн; (3.36)
Допускаемая осевая сжимающая сила из условия местной устойчивости в пределах упругости определяется по формуле :
(3.50.)
Допускаемая осевая сжимающая сила из условия общей устойчивости в пределах упругости определяется по формуле :
; (3.51.)
Где Е=1,91∙105 МПа – модуль продольной упругости
=2,4 – коэффициент запаса прочности.
= 2,83∙ℓпр/(D+S–c) – гибкость ,(3.52.)
где ℓпр = 23,4 – приведенная расчетная длина обечайки
ℓпр = 2∙9,=19 м (3.53.)
= , тогда
=
МН
= min=0,44 МН
= π∙(0,5+0,009-0,002)∙(0,009-0,002)∙149=1,7 МН
= МН
Допускаемый изгибающий момент определяется по формуле :
, (3.54.)
Где = 0.25π∙D∙(D+S-c)∙(S-c)∙ - допускаемый изгибающий момент из условия прочности , МН∙м (3.55.)
- допускаемый изгибающий момент из
условия устойчивости в пределах упругости, МН∙м
=0,25∙3,14∙0,5∙(0,5+0,009-0,002) ∙(0,009-0,002) ∙149=0,21 МН∙м
=МН∙м
МН∙м
Осевая сжимающая сила в рабочих условиях определяется по формуле:
, где
- вес обечайки колонны, МН(3.56.)
(3.57)
= 7850 кг/м3 – плотность углеродистой стали ;
= 0,0025 м3– объем днища;
= 0,0118 МН- вес внутренних устройств (3.58.)
= 0,0014 МН – вес среды в аппарате
= 2∙0,31∙0,008∙7850∙9,81=381,96Н=0,000381 МН
= 0,011 Мн – вес изоляции
= МН
= 0,0139+0,000381+0,0118+0,0014+0,011=0,03848 МН
Для определения изгибающих моментов, для разных состояний аппарата воспользуемся программой расчета изгибающего момента от ветровой нагрузки
« STR 3» на ЭВМ. Данные расчета приведены на рисунке 3.2.
Подставляя полученные данные в формулу (3.47) получаем
- условие устойчивости аппарата в рабочих условиях :
получим <1
Устойчивость обечайки при S= 0,009 м обеспечивается
колонного типа постоянного по высоте сечения
(расчет произведен по программе STR3. ВЦ Д/Ф НГТУ 2008г.) | ||
Исходные данные для расчета | ||
1 | Внутренний диаметр корпуса аппарата, м | 0.5000 |
2 | Наружный диаметр корпуса аппарата, м | 0,5300 |
3 | Толщина стенки обечайки корпуса, м | 0.0090 |
4 | Суммарная прибавка к расчетной толщине стенки обечайки, м | 0.0020 |
5 | Высота аппарата (от уровня земли), м | 13.9800 |
6 | Высота постамента (от уровня земли), м | 0.0000 |
7 | Высота опоры (от уровня земли), м | 4.0000 |
8 | Вес аппарата в рабочих условиях (включая вес обслуживающих площадок, изоляции, внутренних устройств и рабочей среды, МН | 0.0481 |
9 | Вес аппарата при гидроиспытаниях (включая вес жидкости, заполняющей аппарат), МН | 0.0543 |
10 | Минимальная нагрузка аппарата от собственного веса в условиях монтажа (после установки аппарата в вертикальное положение, МН | 0.0357 |
11 | Максимальная нагрузка аппарата от собственного веса в условиях монтажа, МН | 0.0467 |
12 | Наружный диаметр опорного кольца, м | 0.7500 |
13 | Коэффициент неравномерности сжатия грунта | 70.0000 |
14 | Модуль продольной упругости материала аппарата при рабочей температуре, МПа | 0.191Е+06 |
15 | ------------------------- при температуре 20˚С, МПа | 0.199Е+06 |
16 | Нормативный скоростной напор ветра на высоте 10 метров над поверхностью земли, МПа | 0.0003 |
17 | Число участков (вместе с опорой) | 20.00 |
18 | Число площадок обслуживания | 4.00 |
Определение расчетных усилий от ветровых нагрузок для аппарата колонного типа постоянного по высоте сечения | |
(расчет произведен по программе STR3. ВЦ Д/Ф НГТУ 2008г.) | |
Исходные данные для расчета | |
19. Высота ј-й площадки обслуживания от уровня земли (начиная с верху) | 20. Сумма всех проекций ј-й площадки на плоскость, перпендикулярную к направлению ветра. |
Х (1) = 13.2500 Х (2) = 11.2500 Х (3) = 8.7500 Х (4) = 4.0000 | А (1) = 1.5000 А (2) = 1.5000 А (3) = 1.5000 А (4) = 1.5000 |
Результаты расчета (по программе STR3) | |
Расчетные изгибающие моменты от действия ветровых нагрузок | |
М1- в рабочих условиях ; М2 – в условиях гидроиспытания; М3 – в условиях монтажа (минимальная нагрузка от собственного веса) ; М4 - в условиях монтажа (максимальная нагрузка от собственного веса) ; | |
Сечение аппарата Z-Z | Сечение аппарата Y-Y |
М1 – 5.12512Е-02 М2 – 5.09076Е-02 М3 – 1.88534Е-02 М4 – 5.11770Е-02 | М1 – 8.24998Е-02 М2 – 8.19395Е-02 М3 – 2.99189Е-02 М4 – 8.23847Е-02 |
... на установке, являются пожароопасными. Поэтому необходимо производить контроль всех технологических параметров, влияющих на безопасность проведения процесса. Этому способствуют средства контроля и автоматизации, применяемые в настоящее время на установке селективной очистки масел. 3.1 Выбор и обоснование параметров контроля, регулирования и сигнализации В экстракционной колонне К – 1 ...
... ВОПРОСЫ РЕФОРМИРОВАНИЯ И РЕСТРУКТУРИЗАЦИИ ПРЕДПРИЯТИЙ. Несколько лет назад в качестве одной из мер решения проблемы спада производства возник вариант реформирования и реструктуризации предприятий с привлечением консультантов. Появились и отдельные примеры существенного улучшения финансово-экономического состояния предприятия за счет активизации и использования его внутренних возможностей. К ...
0 комментариев