Самый верхний уровень любой автоматизированной системы - это, конечно, человек. Однако в современной технической литературе под верхним уровнем понимается комплекс аппаратных и программных средств, выполняющих роль полуавтоматического диспетчерского узла АСУТП, ядром которого служит ПК или более мощный компьютер. Человек-оператор входит в систему как одно из функциональных звеньев верхнего уровня управления. Такой подход имеет и положительные, и отрицательные стороны. Положительный момент состоит в том, что круг обязанностей оператора в таком случае заранее определен, и от него не требуется детального знания технологического процесса. Другими словами, управлять процессом сможет не только квалифицированный технолог. Отрицательные же стороны - следствие того, что уменьшается гибкость управления за счет снижения влияния на процесс [2].
В связи с этим разработчикам АСУТП приходится учитывать дополнительные требования. Необходимо не только принять во внимание аппаратную составляющую процесса, не только подобрать режимы работы оборудования, но и разработать надежное и корректно работающее ПО. Конечно, оптимальный вариант - это такая организация работы, когда одна и та же группа разработчиков отвечает и за технологическую карту процесса, и за подбор и отладку оборудования, и за разработку ПО. В таком случае разработчики должны быть одинаково сильны и в технологии конкретного процесса, и в применении специального оборудования, и в написании сложных управляющих, сервисных и коммуникационных программ. Однако подобрать такую команду бывает затруднительно.
Для упрощения разработки программной составляющей АСУТП сейчас используются так называемые программы ММI (Man-Machine Interface - интерфейс человек-машина) и SCADA (Supervisory Control and Data Acquisition - диспетчерское управление и сбор данных). Применение этих пакетов позволяет вести автоматизированную разработку ПО АСУТП; осуществлять в реальном времени контроль и управление технологическим процессом; получать и обрабатывать информацию о процессе в удобном виде.
Самый захватывающий и на первый взгляд простой этап при использовании SCADA-систем - это моделирование технологического процесса на экране монитора. Графический аналогичный Windows интерфейс системы интуитивно понятен и прост. Для установки исполнительных механизмов, электродвигателей, клапанов, емкостей, трубопроводов и прочего используемого в технологическом процессе оборудования достаточно щелчка мышью. Привязка параметров оборудования к потребностям процесса также проста, выполняется за несколько щелчков мышью. Глобальные и «тактические» параметры процесса заносятся в формы, организованные в виде таблиц или баз данных. Устанавливаются стандартные органы управления процессом, организуется опрос датчиков контроля. После чего можно щелкнуть мышью по кнопке «Пуск» и запустить работу технологического процесса. Так происходит в теории или при демонстрации возможностей конкретной SCADA-системы. Но на практике все сложнее [2].
Разработка АСУТП, использующих SCADA-системы, вне зависимости от процесса и конкретного пакета SCADA подразумевает следующие основные этапы:
· разработка архитектуры системы в целом. АСУТП строится в клиент-серверной архитектуре. Определяется функциональное назначение отдельных узлов автоматизации и их взаимодействие;
· создание прикладной системы управления каждым узлом автоматизации (вернее, алгоритма автоматизированного управления этим узлом);
· анализ и устранение аварийных ситуаций;
· решение вопросов взаимодействия между уровнями АСУТП; подбор линий связи, протоколов обмена; разработка алгоритмов логического взаимодействия различных подсистем;
· решение вопросов возможного наращивания или модернизации системы;
· создание интерфейсов оператора;
· программная и аппаратная отладка системы.
Все эти вопросы необходимо решать на этапе проектирования и создания именно верхнего уровня АСУТП, иначе могут возникнуть ситуации, когда разнообразные функциональные модули технологического процесса будет затруднительно увязать с единой по идеологии и техническому воплощению системой управления. Использование системы SCADA позволяет вполне успешно провести все вышеперечисленные этапы проектирования и отладки.
1.2.2 Как работают SCADA-системыSCADA-пакеты состоят из нескольких программных блоков: модули доступа и управления, сигнализации, базы данных реального времени, базы данных и модули ввода-вывода и аварийных ситуаций.
Главное требование к SCADA-системам - корректная работа в режиме реального времени. Причем главным приоритетом при передаче и обработке обладают сигналы, поступающие от технологического процесса или на него и влияющие на его протекание. Они имеют приоритет даже больший, чем обращение к диску или действия оператора по перемещению мыши или сворачиванию окон. Для этих целей многие пакеты реализованы с применением операционных систем ОС реального времени, однако в последнее время все больше разработчиков создает свои SCADA-продукты на платформе Microsoft Windows NT, встраивая в нее подсистемы жесткого реального времени RTX (Real Time Extension). При таком подходе можно использовать Windows NT как единую ОС при создании многоуровневых систем, задействовать стандартные функции Win32 API и строить интегрированные информационные системы – АСУП [2].
Источники данных в системах SCADA могут быть следующими.
· Драйверы связи с контроллерами. Очень важна надежность драйверов связи. Драйверы должны иметь средства защиты и восстановления данных при сбоях, автоматически уведомлять оператора и систему об утере связи, при необходимости подавать сигнал тревоги.
· Реляционные базы данных. SCADA-системы поддерживают протоколы, независимые от типа базы данных, благодаря чему в качестве источника данных может выступать большинство популярных СУБД: Access, Oracle и т. д. Такой подход позволяет оперативно изменять настройки технологического процесса и анализировать его ход вне систем реального времени, различными, специально созданными для этого программами.
· Приложения, содержащие стандартный интерфейс DDE (Dynamic Data Exchange) или OLE-технологию (Object Linking and Embedding), позволяющую включать и встраивать объекты. Это дает возможность использовать в качестве источника данных даже некоторые стандартные офисные приложения, например Microsoft Excel.
Ввод поступающих и вывод передаваемых данных организованы как система специальных функциональных блоков. Текущая информация о процессе хранится в специальных базах ввода-вывода. Входные блоки получают информацию и приводят ее в вид, пригодный для дальнейшего анализа и обработки. Блоки обработки реализуют алгоритмы контроля и управления, такие как ПИД-регулирование, задержка, суммирование, статистическая обработка; над цифровыми данными могут проводиться операции булевой алгебры и др. Выходные блоки передают управляющий сигнал от системы к объекту. Для связи с объектами используются широко распространенные интерфейсы RS-232, RS-422, RS-485, Ethernet. Для увеличения скорости передачи применяются различные методы кэширования данных, что устраняет перегрузку низкоскоростных сетей. Иными словами, если два различных клиента одновременно запрашивают у сервера одни и те же данные, он посылает контроллеру не два запроса, а лишь один, возвращая второму клиенту данные из кэш-памяти.
Едва ли не самый важный момент при создании АСУТП - это организация такой системы управления, которая обеспечивала бы надежность и оперативную отработку аварийных ситуаций как в самой системе управления, так и в технологическом процессе. Аварийное сигнализирование и отработка аварийных ситуаций в технологическом процессе в большинстве SCADA-систем выделяются в отдельный модуль с наивысшим приоритетом. Надежность же системы управления достигается за счет горячего резервирования. Можно зарезервировать все: сервер, его отдельные задачи, сетевые соединения и отдельные (или все) связи с аппаратурой. Резервирование происходит по интеллектуальному алгоритму: чтобы не создавать удвоенную нагрузку на сеть, основной сервер взаимодействует с аппаратурой и периодически посылает сообщения резервному серверу, который сохраняет в памяти текущий статус системы. Если основной сервер выходит из строя, резервный берет управление на себя и работает до тех пор, пока основной не приступит к работе. Сразу после этого базы данных основного сервера обновляются данными резервного и управление возвращается основному серверу [2].
Все SCADA-системы открыты для дальнейшего расширения и усовершенствования и имеют для этих целей встроенные языки высокого уровня, чаще всего Visual Basic, либо допускают подключение программных кодов, написанных самим пользователем. Кроме того, к системам можно подключать разработки иных фирм, объекты ActiveX, стандартные библиотеки DLL Windows. Для реализации этих технологий разработаны специальные инструментальные средства и специализированный интерфейс.
SCADA-система может быть интегрирована с самыми разными сетями: другими SCADA-системами, офисными сетями предприятия, регистрирующими и сигнализирующими сетями (например, охрана и пожарная сигнализация) и т.п. Для эффективной работы в этой разнородной среде SCADA-системы используют стандартные протоколы NETBIOS и TCP/IP. Одно только упоминание протокола TCP/IP уже говорит о том, что SCADA-системы могут работать и в Интернете, тем более что все более актуальной становится передача оперативной и статической информации о процессе на Web-узлы.
В заключение хотелось бы сказать, что понятие АСУТП изначально шире, чем SCADA. Когда в литературе иногда говорят о SCADA-системах, подразумевая АСУТП, это не совсем правильно. SCADA разрабатывались именно как системы, позволяющие предоставлять оператору информационные услуги на верхнем уровне управления технологическим процессом. Но они не могут обеспечить полностью автоматизированное управление сверху донизу хотя бы по той простой причине, что это всего лишь программный продукт, устанавливаемый на персональном компьютере. А любой технологический процесс требует, кроме того, еще разнообразного специфического оборудования и происходит он в реальной жизни, а не в виртуальной среде.
Однако сложившаяся практика построения автоматизированных систем управления достаточной сложности свидетельствует о том, что применение SCADA-систем в проектировании АСУТП значительно упрощает жизнь разработчикам и позволяет организовать надежное и качественное управление при эксплуатации систем.
Установка селективной очистки масел предназначена для удаления из масляных фракций смолистых веществ, полициклических и нафтено – ароматических углеводородов с короткими боковыми цепями, серосодержащих соединений путем экстракции полярными растворителями с целью улучшения их химического состава, вязкостно – температурных и антиокислительных свойств, повышения их индекса вязкости и снижения коксуемости и нагаро – лако – образующих свойств [4].
Исходным сырьем для производства нефтяных масел служат масляные дистилляты, получаемые при вакуумной перегонке мазутов [5].
В этих фракциях содержатся [6]: парафиновые углеводороды (алканы нормального и изостроения); нафтеновые углеводороды, содержащие 5-ти и 6-тичленные кольца с парафиновыми цепями различной длины; ароматические углеводороды (арены моно- и полициклические); смолисто-асфальтеновые вещества; серо-, азот - и кислородсодержащие гетероорганические соединения.
Гудрон подвергается деасфальтизации с целью удаления смолистых веществ и полициклических углеводородов с повышенной коксуемостью и низким индексом вязкости (малые количества могут быть удалены при селективной очистке).
Ароматические углеводороды, в большинстве случаев содержащие нафтеновые кольца и боковые парафиновые цепи разной длины, ароматические углеводороды с короткими боковыми цепями, а также кислородсодержащие соединения, представленные в виде производных фенола, и серосодержащие соединения удаляются в процессе селективной очистки.
Удаление парафиновых углеводородов, имеющих по сравнению с другими углеводородами наименьшую вязкость и кристаллизующихся при пониженных температурах, осуществляют в процессе депарафинизации с целью получения высокозастывающих масел.
Таким образом, после облагораживания масляная основа нефтяных масел представляет собой концентрат нафтено-парафиновых углеводородов, содержание которых в зависимости от происхождения нефти составляет 50-75%.
Целевые продукты селективной очистки масел – рафинаты по сравнению с сырьем имеют меньшие плотность, вязкость, кислотность коксуемость и более высокую температуру застывания. С целью улучшения низкотемпературных свойств масел рафинаты направляются на депарафинизацию и далее используются для приготовления масел.
Побочные продукты селективной очистки – экстракты, содержащие низкоиндексные полициклические ароматические углеводороды и смолистые соединения, используются в качестве сырья для производства битумов, технического углерода, нефтяных коксов, в качестве компонента мазута, газойлевой фракции, в качестве топлива печей на битумной установке и для приготовления пластификаторов каучуков в резиновой и шинной промышленности.
2.2 Теоретические основыПроцесс селективной очистки относится к физическим методам очистки масел, которые предусматривают разделение масляной фракции на две части без изменения химического строения углеводородов исходного сырья.
Селективная очистка – массообменный экстракционный процесс, основанный на избирательном растворении отдельных групп углеводородов, входящих в состав масел. [3-5].
Процесс экстракции заключается в последовательном перемешивании растворителя и исходного сырья и разделении полученных сосуществующих экстрактной и рафинатной фаз.
Разделение фаз происходит вследствие разности их плотностей, обусловленной различием плотностей растворителя и сырья [3, 7].
В верхней фазе – рафинатной – находится масло с небольшим количеством растворителя.
В нижней фазе – экстрактной – находится основная масса растворителя с небольшим количеством нежелательных компонентов масла с небольшим количеством нежелательных компонентов масла, которые в основном состоят из полициклических ароматических углеводородов с отрицательными значениями индекса вязкости и смолистых веществ.
Физико-химическую сущность, механизм и количественные закономерности экстракционных процессов в настоящее время трактуют с позиций молекулярной теории растворов (МТ). Согласно МТ растворов, состояние системы определяется двумя противоположно-действующими факторами: с одной стороны, межмолекулярным взаимодействием, обусловливающим потенциальную энергию молекул, и, с другой стороны, тепловым движением, которое определяет их кинетическую энергию. Притяжение между молекулами веществ, объясняющее их взаимную растворимость, создается за счет сил Ван-дер-Ваальса (трех типов) и водородных связей.
В случае растворения двух полярных веществ имеет место ориентационное взаимодействие постоянных диполей. В этом случае вокруг молекулы образуется электрическое поле и они стремятся друг относительно друга. Это приводит к их притяжению, в результате чего одно вещество растворяется в другом. Это взаимодействие короткое и выражается уравнением
, (1.1)
где m 1, m2 – дипольные моменты молекул соответственно растворителя и сырья;
k – константа Больцмана;
r – расстояние между взаимодействующими молекулами;
T – абсолютная температура.
В случае растворения двух веществ, одно из которых полярно, а другое неполярно, имеет место взаимодействие индуцированных диполей в неполярных молекулах и постоянных диполей молекул растворителя. Под действием электростатического поля полярных молекул происходит изменение электронной структуры молекул неполярного вещества. При этом центр тяжести отрицательно-заряженных частиц смещается по отношению к ядру на расстояние l, что приводит к возникновению индуцированного дипольного момента mи в молекулах неполярного вещества. Индуцированый дипольный момент пропорционален напряженности поля
,(1.2)
где a - показатель, определяющий природу вещества и называемый поляризуемостью; Е – напряженность поля.
Деформация электронных облаков неполярных молекул связана с их внутренним сопротивлением изменению структуры и поэтому практически не зависит от температуры.
Если оба вещества неполярны, то взаимодействие их молекул определяется дисперсионными силами, открытыми Е. Лондоном Дисперсионные силы притяжения вызываются взаимными короткими, периодически возникающими диполями. Молекулы неполярных веществ обладают флуктуирующими диполями (это такие колебания, которые вызывают мгновенные отклонения распределения электронной плотности от среднего распределения). Положение электрона относительно ядра можно рассматривать как кратковременный вращающийся диполь, заставляющий молекулу другого вещества в данное мгновение ориентироваться относительно этой молекулы.
При сближении молекул неполярных веществ движение флуктуирующих диполей становится согласованным, обусловливая их притяжение и согласованную ориентацию. Это приводит к появлению постоянно возобновляющихся сил притяжения, что обусловливает взаимную ориентацию неполярных молекул. Энергия Ед дисперсионного взаимодействия выражается уравнением Е. Лондона, выведенным методом квантовой механики:
, (1.3)
где h - постоянная Планка;
nо – частота колебаний электрического осциллятора.
На энергию дисперсионного взаимодействия температура влияние не оказывает.
К наиболее значимым параметрам, определяющим вид и интенсивность межмолекулярных взаимодействий, следует отнести расстояние между взаимодействующими молекулами. От этого расстояния зависят величины сил притяжения или отталкивания, числа соударений разноименных молекул, прочность образующихся связей.
Учет только ван-дер-ваальсовых взаимодействий приводит к весьма упрощенной модели расчета потенциальной энергии системы. В механизмах ориентационного, индукционного и дисперсионного эффектов заложены лишь парные взаимодействия без учета образования промежуточных соединений и ассоциации молекул. При взаимодействии высокомолекулярных соединений в растворах, как показал А.З. Биккулов, энергия связи заметно меняется в зависимости от расположения отдельных участков соседствующих молекул (связей радикал-радикал, радикал - функциональная группа, функциональная группа - функциональная группа).
При математическом описании дальнодействующего взаимодействия важно учитывать ассоциацию молекул посредством водородных связей, которые проявляются вследствие способности некоторых элементов (F, O, N, Cl, S) оттягивать электрон от соседнего атома водорода, который в свою очередь в некоторой степени приобретает свойства протона H+ и становится способным к взаимодействию с электронами электроотрицательных атомов указанных элементов. Образуется так называемая водородная связь: XH…X. Водородные связи образуются при пониженных температурах, так как повышение температуры приводит к их разрыву вследствие теплового движения молекул. Энергия водородной связи составляет 16,8 – 29,4 кДж/моль, а энергия всех типов ван-дер-ваальсовых взаимодействий » 41,9 кДж/моль, т.е. межмолекулярное взаимодействие обусловлено силами Ван-дер-Ваальса и водородной связью, причем в водородной связи существенную роль играет и донорно-акцепторное взаимодействие.
При растворении компонентов нефтяного сырья в растворителях могут в той или иной степени проявляться все составляющие сил межмолекулярного взаимодействия. Очевидно, с повышением температуры роль ориентационного взаимодействия и водородных связей уменьшается и роль дисперсионных сил возрастает.
Межмолекулярные силы взаимодействия при растворении компонентов масляных фракций в полярных и неполярных растворителях различны. Неполярные растворители, как например, низкомолекулярные жидкие или сжиженные углеводороды или соединения с небольшим дипольным моментом (хлороформ, этиловый спирт и др.) характеризуется тем, что притяжение между молекулами растворителя и углеводородов нефтяных фракций, обусловливающее образование растворов, происходит за счет дисперсионных сил. Неполярные растворители смешиваются с жидкими углеводородами нефти в любых соотношениях.
Твердые углеводороды масляных фракций ограниченно растворяются в неполярных растворителях. Растворимость их подчиняется общим законам теории растворимости твердых углеводородов в неполярных растворителях, в том числе в жидких компонентах масляных фракций, - уменьшается с увеличением их концентрации и молекулярной массы, а также температуры кипения фракций. Растворимость твердых углеводородов увеличивается при повышении температуры, при температуре плавления парафины и церезины, так же как и жидкие углеводороды, неограниченно растворяются в неполярных растворителях.
В производстве нефтяных масел наиболее широко используются полярные растворители. Под действием ориентационного взаимодействия в полярном растворителе будут в первую очередь растворяться смолистые соединения и гетеросоединения. При дальнейшем увеличении количества полярного растворителя под действием индукционных сил будут растворяться полициклические. При повышении температуры системы ее кинетическая энергия возрастает, что приводит к увеличению дисперсионной составляющей, так как в этом случае из-за возрастания теплового движения молекул ориентация их под действием электрического поля молекул растворителя затрудняется. Под влиянием дисперсионных сил преимущественно растворяются нафтеновые и парафиновые углеводороды.
С повышением температуры растворимость компонентов масляных фракций в полярных растворителях увеличивается и при критической температуре растворения (КТР) наступает полное растворение их в данном количестве растворителя. Типичная кривая растворимости для системы масло – растворитель представлена на рисунке 2.1.
Рисунок 2.1 – Зависимость КТР для системы масло – растворитель от содержания растворителя (растворитель - фурфурол)
Образование однофазной системы при температурах выше КТР объяснятся тем, что в этих условиях кинетическая энергия молекул достаточна для преодоления различия в энергиях межмолекулярного притяжения однотипных молекул компонентов, входящих в состав масляной фракции, и взаимного притяжения молекул самого растворителя. При температурах ниже КТР тепловое движение молекул превышает силы притяжения молекул не всех компонентов масляной фракции. В результате чего система разделяется на две жидкие фазы. КТР зависит от структуры углеводородов и природы растворителя.
Растворимость углеводородов масляных фракций в полярных растворителях зависит от дипольного момента молекул растворителя, способности молекул углеводорода поляризоваться под действием электрического поля молекул растворителя, что, в свою очередь связано с внутренним строением углеводородов, и дисперсионных сил, обусловленных наличием углеводородного радикала в молекуле растворителя.
Наибольшим значением средней молекулярной поляризации характеризуются ароматические углеводороды, наименьшим - парафиновые; нафтеновые по способности поляризоваться занимают промежуточное положение. Вследствие этого ароматические углеводороды имеют самые низкие значения КТР в полярных растворителях, а парафиновые – самые высокие.
Помимо химической природы на величину КТР и строение молекул углеводородов. Так, с увеличением числа колец в углеводородах их КТР резко уменьшается, с возрастанием длины алкильных цепей – повышается.
Решающими эксплуатационными свойствами при выборе эффективного растворителя для экстракционных процессов являются растворяющая способность и избирательность.
Под растворяющей способностью понимают абсолютную растворимость компонентов масляных фракций в определенном количестве растворителя; избирательность характеризует способность растворителя растворять вещества только определенной структуры, что позволяет отделять одни компоненты от других и получать продукты, различающиеся по свойствам.
Растворяющую способность оценивают по выходу растворенного компонента сырья при одинаковой кратности растворителя, по значению КТР при одинаковой кратности растворителя и количеством растворителя, необходимом для извлечения одного и того же растворенного компонента сырья.
Об избирательности растворителя можно судить по разности (градиенту) таких показателей, как плотность, индекс вязкости, коэффициент преломления или анилиновая точка.
Применительно к процессам селективной очистки масел пользуются коэффициентом распределения (К), определяемым из соотношения объемных концентраций извлекаемых компонентов в экстракте (С экс) и рафинате (Сраф):
К=. (1.4)
Для характеристики избирательности растворителя для этого же процесса можно пользоваться уравнением А.З. Биккулова:
Избирательность = (1.5),
где Аэкс, Араф, Бэкс, Браф – содержание в экстракте и рафинате соответственно ароматических и парафино-нафтеновых углеводородов.
Растворяющие и избирательные свойства полярных растворителей обусловливаются энергией и соотношением дисперсионных и электростатических ван-дер-ваальсовых сил. Дисперсионное взаимодействие отражает растворяющие свойства растворителей. Электростатическая же составляющая (ориентационная и индукционная) ван-дер-ваальсовых сил предопределяет преимущественно избирательные свойства полярных растворителей.
Ассиметричность структуры предопределяет электростатическую составляющую общих ван-дер-ваальсовых сил взаимодействия молекул растворителя и сырья.
Ассиметричность молекуле растворителя придает не только радикал, но и функциональная группа. Дисперсионная составляющая общих сил взаимодействия определяется строением радикала: алифатическая цепь и симметричность радикала усиливают эту составляющую.
Введение в состав молекулы растворителя метильной или фенильной группы значительно снижает КТР, повышая растворяющую способность растворителя. Карбоксильная и нитрогруппа повышает КТР. Наибольший эффект уменьшения растворяющей способности растворителя дают функциональные группы, образующие водородную связь. Вторая функциональная группа в молекуле растворителя еще заметнее понижает его растворяющую способность. По влиянию на избирательность растворения функциональные группы можно расположить в ряд:
NO2>CN>CHO>COOH>OH>NH2.
Введение в молекулу растворителя гетероатомов и групп атомов (O,N,CO,F,CN) приводит к повышению избирательности растворителя по отношению к углеводородам с донорно-акцепторными свойствами.
Переход от алифатических соединений к циклическим и гетероциклическим аналогам способствует заметному увеличению избирательности растворителя по отношению к ароматическим и непредельным углеводородам; к такому же эффекту приводит изомеризация молекул растворителя вдали от электрофильного центра. Переход от сильноассоциированных растворителей к слабоассоциированным приводит к повышению растворяющей способности.
2.3 Описание технологической схемы установки... для этого реагентный метод или мембранные методы обессоливания (обратный осмос, электродиализ). По технологическим процессам и, соответственно, применяемому оборудованию, методам очистки сточных вод гальванического производства можно дать следующую классификацию: · механические / физические (отстаивание, фильтрация, выпаривание); · химические (реагентная обработка); · коагуляционно ...
... 27,6 105 Полиэтилен 1014 2,2 23 60 Полипропилен 1014 2 23,6 100 Тефлон (фторопласт) >2·1016 2,1 110 200 Сердечники. Сердечники силовых трансформаторов изготавливаются из электротехнической стали. Электротехническая нелегированная сталь с нормированными свойствами в постоянных полях используется для изготовления магнитопроводов всех видов и самых сложных ...
... . Возможность системы SIEMENS позволяет использовать ее для автоматизации технологических процессов малого и среднего масштаба. В связи с этим я выбираю тему дипломного проекта «Автоматизация фильтровального отделения установки 39/2». Основными направлениями в рамках темы дипломного проекта будут являться:а) автоматизация фильтровального отделения с применением микроконтроллера SIEMENS; б) ...
... мембран, кроме соотношения размеров молекул, частиц и размеров пор, влияет обменное взаимодействие между растворенным веществом и веществом мембраны. Ультрафильтрация позволяет производить очистку сточных вод от примесей нефтепродуктов, когда гидрофобные молекулы углеводородов задерживаются гидрофильными полярными ацетатцеллюлозными мембранами (АЦМ) с размерами пор, превышающими размеры молекул ...
0 комментариев