20. Сравнение с другими конструкциями.
Сравним ли данную конструкцию с существующими?
Легче ли данная конструкция?
Более ли она надежна?
Дешевле ли она? и т.д.
21. Соответствие современным требованиям.
Проверено ли, не изменились ли проектные требования и условия окружающей среды с того времени, когда началась работа над проектом?
Не появились ли новые информационные материалы?
Характер приведенных вопросов показывает, что в данном случае метод контрольных перечней применяется, когда основные проектные решения разработаны и осуществляется окончательная доводка конструкции.
Выше перечислены лишь наиболее употребительные методы поиска альтернатив. Более подробно эти и другие методы изложены в книге Дж. Джонса [30].
6.5. Системный подход и системный анализВ соотношении двух терминов, вынесенных в заголовок, в настоящее время нет единства.
Некоторые авторы считают термины "системный подход" и "системный анализ" синонимами.
Ф.И. Перегудов и Ф.П. Тарасенко [1], рассматривают системный подход в качестве начального, предшествующего формализации задачи, этапа системного анализа, а сам системный анализ определяют как прикладную науку, нацеленную на выяснение причин реальных сложностей, возникших перед коллективом, занимающимся разрешением определенной сложной проблемы, и на выработку вариантов устранения этих сложностей.
По мнению И.В. Блауберга и Э.Г. Юдина [39] более общим понятием является, наоборот, системный подход, а системный, анализ связан с более частными, в том числе формализованными методами и процедурами.
Автор берет за основу эту последнюю концепцию с тем, чтобы сохранить преемственность терминологии с появившимся в последнее время кибернетическим подходом.
6.5.1. Определение системного подхода и системного анализаСистемный подход заключается в рассмотрении изучаемого объекта или процесса не только как самостоятельной системы, но и как элемента некоторой системы более высокого иерархического уровня, в прослеживании как можно большего числа связей, отборе существенных факторов и их оценке.
Суть системного подхода можно проиллюстрировать простым примером. Токарно-винторезный станок является системой. Но в то же время он является элементом технологической линии, производственного участка, цеха. Высшим достижением в области универсальных токарно-винторезных станков как системы является создание станков с числовым программным управлением, которые обеспечивают высокую производительность и качество выполнения работы. Однако, рассматривая этот станок как элемент системы более высокого иерархического уровня, нетрудно убедиться, что он будет эффективен только в условиях крупного современного производства, где экономически оправдано содержание программистов, наладчиков, операторов. В мелкой ремонтной мастерской, где достаточно иметь нередко всего один токарный станок, ЧПУ себя не окупит. Следовательно, специализация отечественного станкостроения только на выпуске станков с ЧПУ была бы ошибкой.
Основными принципами системного подхода являются принципы целостности, сложности и организованности.
Принцип целостности предполагает исследование некоторого конкретного объекта, частично обособленного от других объектов и имеющего специфические закономерности функционирования и развития. Вместе с тем при использовании этого принципа необходимо проанализировать связи исследуемого объекта с другими.
В соответствии с принципом сложности внутренние процессы объектов должны рассматриваться комплексной зависимости, как от внешних, так и от внутренних факторов.
Принцип организованности системного подхода основывается на результатах анализа структурной упорядоченности исследуемых объектов.
При разработке крупных технических проектов системный подход позволяет подчинить решение технических задач требованиям экономическим, социальным и т.д. Тем самым системный подход способствует усилению взаимосвязи технических и общественных наук.
Системный анализ представляет собою методологию исследования с помощью аппарата теории систем сложных и труднодоступных свойств объектов и явлений, которые в принципе невозможно исследовать непосредственным наблюдением объекта.
Методы системного анализа направлены на выдвижение различных вариантов решения задачи (альтернатив) при наличии некоторой неопределенности в условиях этой задачи. Здесь уместно отметить, что любая конструкторская задача всегда содержит неопределенность. В противном случае вместо оригинальной конструкции конструктор получит старое решение.
Выбор варианта решения осуществляется на основе научного исследования, личного опыта разработчик, его интуиции, с учетом технико-экономического обоснования каждой альтернативы.
Основной процедурой системного анализа является математическое моделирование. Поэтому применение системного анализа в технических науках сопровождается их математизацией.
Применение системного подхода и системного анализа в вопросах проектирование, создания, испытания и эксплуатации сложных систем называется системотехникой.
6.5.2. Различие, проектных решений при традиционном и системном подходахРассмотрим этот вопрос на примере сернокислотного производства.
Процесс производства серной кислоты обычно включает следующие основные этапы:
сжигание серного колчедана (пирита) в печи с образованием дымовых газов с содержанием около 12% SO2;
окисление диоксида серы SO2 в контактном аппарате по реакции
; (6.13)
абсорбция серного ангидрида SO3 слабой серкой кислотой с получением концентрированной кислоты.
Описанная схема имеет следующие серьезные недостатки.
Отходом первого этапа процесса является пиритный огарок, который содержит до 60% железа, но не мог быть использован в доменном производстве из-за содержания не выгоревшей до конца серы.
Неполное окисление диоксида серы, который остается в отходящих газах и наносит сильнейший вред природе, замедляя в десятки раз скорость фотолиза в растениях.
Необходимость строительства мощных газоочистных сооружений.
Системный подход, требующий анализа не только внутренних, но и внешних связей, заставляет еще в процессе разработки технологической схемы, придти к следующим результатам.
Движущей силой химического процесса является разность между равновесной и рабочей концентрациями продукта в реакционной массе. Продуктом стадии контактирования является серный ангидрид SO3. После стадии абсорбции его рабочая концентрация в газовой смеси уменьшается. Следовательно, если после абсорбции оставшуюся газовую смесь снова отправить на контактирование, то еще часть so2, превратится в SO3, который можно вновь абсорбировать. Так появилась схема производства серной кислоты с двойным контактированием и двойной абсорбцией.
Из уравнения реакции (6.13) видно, что в процессе контактирования из трех молей исходных газов образуются два моля продукта. В этом случае, согласно правилу Ле-Шателье, повышение рабочего давления в контактном аппарате приводит к сдвигу равновесия вправо, т.е. в сторону более полного окисления SO2 в SO3.
Следовательно, появилась вторая альтернатива-проведение процесса контактирования под избыточным давлением.
Обе названные альтернативы нашли применение в промышленности.
Внедрение в черной металлургии метода получения металла из окатышей позволило организовать извлечение из пиритного огарка железа, селена и некоторого количества серебра.
Следствием применения системного подхода к разработке сернокислотного производства явилось:
повышение выхода продукта из тонны сырья;
значительное снижение требуемой мощности газоочистных сооружений;
резкое снижение количества твердых отходов;
дополнительное получение полезных продуктов.
Следует заметить, что системный подход сегодня не является последним словом в технике. Проектирование ракетно-космической техники базируется на кибернетическом подходе.
Согласно современной концепции, метод сознания новой техники должен включать в себя не только системный подход, но и эволюционный, и управленческий подход, что в сумме и составляет кибернетический подход.
Важнейшим положением кибернетического подхода к исследуемых объектам является представление о их непостоянстве, требующее эволюционного повода к их рассмотрению, базирующегося на одном из важнейших принципов диалектики - принципе историзма.
Управленческий подход находит на практике выражение в программно-целевом подходе, предлагающем выбор целей и средств, реализуемых в определенной временной последовательности, обеспечивающей планомерное достижение этих целей за счет программного управления адекватными средствами.
Если научным фундаментом системного подхода является общая теория систем, то научным фундаментом кибернетического подхода следует считать теоретическую кибернетику.
Кибернетический подход включает предусмотренный теорией систем бионический принцип (заимствование идей из мира окружающей природы).
Важным принципом кибернетического подхода следует считать и определенный алгоритм его реализации:
Установление актуальных, программных целей, формирование и постановка задач по их достижению.
Выбор для достижения этих целей объектов и средств в форме систем соответствующей им сложности.
Определение характерного для этих систем окружения в течение всего периода их существования.
Изучение предыстории, состояния и возможных направлений развития выбранной системы, ее окружения и процессов их взаимодействия.
Установление параметров, определяющих качество этой системы, а также формирование программных уровней полного качества системы, учитывающего как степень достижения поставленных целей с их использованием, так и связанных с этим затрат.
Организация замкнутых контуров управления качеством системы для целенаправленного перевода ее из существующего в намеченное состояние.
Моделирование и максимальная формализация системы, окружения и всех, имеющих к ним отношение объектов, процессов и факторов на основе математического и вычислительного обеспечения теоретически кибернетики.
Реализация процессов управления качеством системы на основе использования всей необходимой информации, циркулирующей по каналам прямой и обратной связи [40].
Литература к теме 6
9. Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ. - М.: Высшая школа, 1989. - 367с.
10. Уемов А.И. Системный подход и общая теория систем. - М.: Мысль, 1972. - 272с.
11. Половинкин А.И. Законы строения и развития техники (постановка проблемы и гипотезы). - Волгоград: Изд. Волгоградского политехнического института, 1985. - 202с.
12. Флейшман Б.С. Технический прогресс и теория сложных систем. В об. Проблемы методологии системного исследования. - М.: Мысль, 1970.
13. Хазен А.М. О возможном и невозможном в науке. - М.: Наука, 1988. - 384с.
14. Ильичев А.В. Эффективность проектируемой техники. Основы анализа. - М.: Машиностроение, 1991. - 336с.
15. Ракитов А.И. Философские проблемы науки. Системный подход. - М.: Мысль, 1977. - 270с.
16. Касти Дж. Большие системы: связность, сложность и катастрофы. - М.: Мир, 1982. - 216с.
17. Пригожин И.Р. От существующего к возникающему: время и сложность в физических науках. - М.: Наука, 1985. - 327с.
18. Юдин Д.В., Юдин А.Д. Число и мысль. - М.: Знание, 1985. - Вып.8.
19. Мамедов Н.М. Моделирование и синтез знаний. - Баку: Элм, 1979. - 97с.
20. Неуймин Я.Г. Модели в науке и технике. - Л.: Наука, 1984. - 186с.
21. Уемов А.И. Логические основы метода моделирования. - М.: Мысль, 1971. - 311с.
22. Половинкин А.И. Основы инженерного творчества. - М.: Машиностроение, 1988. - 366с.
23. Брук В.И., Николаев В.М. Начала общей теории систем. - Л.: СЗПИ, 1977.
24. Кафаров В.В., Глебов М.В. Математическое моделирование основных процессов химических производств. - М.: Высшая школа, 1991. - 399с.
25. Гаазе-Рапопорт Г.Г., Поспелов Д.А. Проблемы науки и технического прогресса. - М.: Наука, 1987. - 288с.
26. Бусленко Н.П. Моделирование сложных систем. - М.: Наука, 1978. - 399с.
27. Снапелев Ю.М., Старосельский В.А. Моделирование и управление в сложных системах. - М.: Советское радио, 1974. - 264с.
28. Шеннон Р. Имитационное моделирование систем - искусство и наука. - М.: Мир, 1978. - 418с.
29. Шрейдер Ю.А., Шаров А.А. Системы и модели. - М.: Радио и связь, 1982. - 152с.
30. Садовский В.Н. Основания общей теории систем. Логико-методологический анализ. - М.: Наука, 1974. - 279с.
31. Хубка В. Теория технических систем. - М.: Мир, 1987. - 208с.
32. Потемкин И.С. Метода поиска технических решений. - М.: МЭИ, 1989. - 62с.
33. Холл А. Опыт методологии для системотехники. - М.: Советское радио, 1975. - 447с.
34. Буш Г.Я. Рождение изобретательских идей. - Рига: Лиесма, 1976. - 126с.
35. Буш Г.Я. Основы эвристики для изобретателей, ч.1 и 2. - Рига: Зинатне, 1977.
36. Мюллер И. Эвристические методы в инженерных разработках. - М.: Радио и связь, 1984. - 144с.
37. Диксон Дж. Проектирование систем: изобретательство, анализ и принятие решений. - М.: Мир, 1969. - 440с.
38. Джонс Дж.К. Методы проектирования. - М.: Мир, 1986. - 326с.
39. Методы поиска новых технических решений. Под ред.А.И. Половинкина. - Йошкар-Ола: Марийское кн. изд-во, 1976. - 186с.
40. Одрин В.М., Картавов С.С. Морфологический анализ систем. Построение морфологических таблиц. - Киев: Наукова думка, 1977.
41. Одрин В.М. Метод морфологического анализа технических систем. - М.: ВНИИПИ, 1989. - 312с.
42. Буш Г.Я. Аналогия и техническое творчество. - Рига: Лиесма, 1981.
43. Альтшуллер Г.С. Найти идею: введение в теорию решения изобретательских задач. - Новосибирск: Наука, 1986. - 209с.
44. Альтшуллер Г.С. Творчестве как точная наука: теория решения изобретательских задач. - М.: Советское радио, 1979. - 184с.
45. Альтшуллер Г.С., Злотин Б.Я. Зусман А.В. Теория и практика решения изобретательских задач. Метод. рекоменд. - Кишинев, 1989. - 125с.
46. Янг Э. Прогнозирование научно-технического прогресса. - М.: Прогресс, 1974.
47. Блауберг А.В., Юдин Э.Г. Становление и сущность системного подхода. - М.: Наука, 1973. - 272с.
48. Автономов В.Н. Создание современной техники. Основы теории и практики. - М.: Машиностроение, 1991. - 304с.
49. Проблемы управления интеллектуальной деятельностью. - Тбилиси, 1974.
50. Амосов Н.И. и др. Автоматы и разумное поведение. - Киев, 1973.
51. Рейтман У. Познание и мышление. - М., 1968.
52. Поникаров В.С. Наука и мистицизм в ХХ в. - М.: Мысль, 1990. - 219с.
53. Богданов А.А. Тектология. Всеобщая организационная наука. - М., 1989.
54. Капитонов Е.Н. Системный подход в технике. Учебное пособие. - Тамбов: Изд-во ТГТУ, 1996. - 62с.
Сегодня существует около тридцати определений слова "техника". Одно из наиболее удачных определений дал И.Я. Конфедаратов: "Техника есть совокупность средств труда, созданных на основе познания законов природы для того, чтобы, направляя энергию природы на ее вещество, производить материальные блага и защищать свою страну" [1].
Таким образом, для создания новой техники необходимо знание законов природы и, как будет показано ниже, законов общества и техники.
А, прежде всего, необходимо дать определение самой категории "закон".
7.1. Определение законаНаиболее развернутое определение понятия "закон" предложил Л.А. Друянов [2]. По его мнению, любой объективный, т.е. не зависящий от воли и сознания людей, закон имеет следующие две характерные черты:
Всякий объективный закон носит необходимый характер, закономерная связь всегда является в то же время необходимой связью, которая, в отличие от случайной связи, при наличии определенных условий неизбежно должна иметь место.
Важнейшей чертой всякого объективного закона является его всеобщность. Объективный закон относится не к отдельному объекту, а к совокупности объектов, составляющих определенный класс, вид, множество, определяя характер их функционирования и развития.
Поскольку всякий закон носит необходимый и всеобщий характер, поскольку он осуществляется всегда и везде, когда и где для этого имеются сходные объекты к соответствующие условия, постольку, следовательно, закономерные связи будут устойчивыми, стабильными, повторяющимися.
Отсюда следует, что закон - это необходимое, существенное, устойчивое, повторяющееся отношение (связь) между явлениями в природе и обществе.
Из всего разнообразия объектов в окружающей нас среде можно ориентировочно выделить четыре более или менее равновеликих по распространенности класса объектов. Это - объекты неживой природы, объекты "живой природы" (биологические), совершенно особое сообщество мыслящих существ - люди и результат их разумной деятельности, класс искусственных объектов - техника.
Накопленные людьми знания позволяют сказать, что закономерность существования неживой природы определяется законами физики, химии и наук, развивающихся на их основе; закономерность существования живой природы определяется законами биологических наук.
Существование человеческого общества не вписывается в биологические закономерности и определяется законами жизни и развития общества. Конечно, на человеческое общество распространяются основные законы биологии: размножение, приспособление к среде, обмен веществ, закон наследственности и т.д.
Однако, как заметил Д. Льюис, эволюция человека больше не является биологической эволюцией и прежние формы изменчивости и борьбы за выживание имеют для него ограниченное, второстепенное значение. Основной движущей силой изменения становится формирование людьми своей материальной жизни, ее уровня, за счет производства средств к жизни и воспроизводства самого человека.
Таким образом, в общественных отношениях действуют как естественные, так и производственные факторы. Специфические законы общества органически сливаются с общими законами природы, придают им новое качественное содержание. Под влиянием таких факторов, как труд, производство, распределение, обмен продуктами труда, потребление, языковое общение, сознание и т.д. органическая форма движения материи сбросила свою животную специфику и приобрела качественно более высокую социальную форму своего проявления [3]. Аналогично природе и обществу, должны существовать законы техники, неразрывно связанные с законами природы, как это следует из определения техники, столь же неразрывно связанные с законами развития общества, поскольку цель создания техники - удовлетворение запросов общества, и в то же время законы объективные, т.е. присущие самой технике и не зависящие от воли людей.
Все законы природы, безусловно, являются объективными и не зависят от воли человека.
Например, пропорциональность между деформациями и напряжениями, действующими в металлической детали, существует независимо от того, знаем мы закон Гука или нет. В человеческом обществе, наряду с объективными законами его развития, действуют также юридические законы и законы морали.
Под юридическим законом подразумевают нормативный правовой акт, изданный высшим органом государственной власти в установленном порядке, регулирующий основные общественные отношения и обладающий высшей юридической силой.
Юридические законы могут существенно различаться в различных странах.
Эти законы оказывают некоторое влияние на развитие техники, что находит свое выражение, например, в стандартах.
Законы морали представляют собой совокупность принципов и норм поведения, характерных для представителей того или иного общества или социальной группы.
В отличие от правовых норм, на страже соблюдения которых стоят органы государства, соблюдение нравственных норм обеспечивается силой общественного воздействия.
Юридические законы и законы морали не являются результатом произвольной, не обусловленной объективными требованиями, деятельности людей.
Важнейшая особенность социальной деятельности людей состоит в том, что в процессе этой деятельности наряду с естественными возникают новые "искусственные" материально-производственные факторы, к которым относятся производительные силы и производственные отношения, составляющие в совокупности способ производства материальных благ; идеологическая надстройка; материальные блага, созданные в результате труда.
Эти искусственные факторы явились закономерным результатом активного приспособления людей к условиям естественной среды [3].
Возникнув же в результате трудовой деятельности человека, они превратились в активный фактор формирования всей человеческой структуры, привели к возникновению общественно-экономических формаций, каждая из которых создает свой механизм самозащиты в виде формирования соответствующего права и морали. Таким образом, в социальной жизни содержатся естественные основы.
Настоящая работа, посвящена рассмотрению лишь объективных законов, определяющих строение и развитие техники.
Следует заметить, что по сфере действия различают три основные группы законов.
Специфические или частные законы. Примером может служить закон сложения скоростей изучаемый в механике.
Законы, общие дм больших групп явлений. Примером является закон естественного отбора, действующий в живой природе. Аналог этого закона - закон прогрессивной эволюции - действует в области техники
Всеобщие или универсальные законы. К этой группе относятся законы диалектики:
закон единства и борьбы противоположностей;
закон отрицания отрицания;
закон перехода количества в качество.
Сюда же относится универсальные законы экологии:
все связано со всем;
природа знает лучше;
ничто не дается даром;
все должно куда-то даваться.
К всеобщим законам, очевидно, следует отнести и принцип наименьшего действия, который Ферма определил следующим образом: Природа действует наиболее легкими и доступными путями.
Лейбниц, пожалуй, более точен в своем определении: устройство природы должно проявляться как максимум добра (полезного эффекта) и минимум действия во всех процессах. Особенно глубоко этот принцип разработан в вариационном исчислении, где известен как принцип Гамильтона-Остроградского.
Всеобщим законом следует считать и второе начало термодинамики, т.е. закон монотонного возрастания энтропии при протекании любых процессов во Вселенной.Л. Больцман предложил следующую вероятностно-статистическую формулировку второго начала термодинамики: "Изменение, которое может произойти само собой, есть переход от менее вероятного состояния к более вероятному состоянию" [Неуймин Я.Г. Модели в науке и технике. - Л.: Наука, 1984. - 189с.]. (Энтропия - мера вероятности пребывания системы в денном состоянии. Числено определяется как отношение количества теплоты, сообщенного системе или отведенного от нее, к термодинамической температуре системы)
По утверждению В.Е. Хаина [24], с которым согласен и автор, основные принципы системного анализа - иерархия систем, их эмерджентные свойства, принцип обратной связи - имеют значение, равное законам диалектики, и служит их естественным дополнением. То же относится к выдвинутой И.Р. Пригожиным [25] концепции самоорганизации, саморазвития открытых неравновесных систем. Ведь к этой категории относятся все системы, обменивающиеся веществом, энергией, информацией с внешней средой, т.е. все объекты живой природы и вся техника.
Очевидно, требует объяснения использованное выше понятие "Эмерджентные свойства". Этот термин обозначает, что система может обладать свойствами, возникающими только в самой этой системе, и не присущими ни одному из входящих в систему элементов. Всеобщими являются законы сохранения:
закон сохранения и превращения энергий;
закон сохранения массы.
Приведенные примеры всеобщих законов дают достаточное у представление об этой категории.
Между общими и частными законами существует диалектическая взаимосвязь: общие законы действуют через частные, а частные представляют собой проявление общих законов, носят объективный характер, существуют независимо от сознания людей.
Частные законы изучаются частными естественными, техническими и общественными науками. Использование частных законов в технике очевидно: каждый элемент любого технического объекта осуществляет тот или иной физический принцип действия. Таким образом, на уровне частных законов необходимость выделения каких-то особых законов развития техники не является очевидной.
Универсальные законы составляют основу мировоззрения и распространяются в равной мере, как на природные, так и на технические объекты.
С примерами проявления, в частности, закона единства и борьбы противоположностей в химической технике можно ознакомиться в работе [4].
Таким образом, общие законы развития техники относятся ко второй группе объективных законов. Сам факт существования таких законов сегодня можно считать общепризнанным. Это отмечает Ю.С. Мелещенко [5]: "Техника образует специфический, относительно самостоятельный класс общественных явлений, что, в свою очередь позволяет ставить вопрос о существовании соответствующего специфического класса законов и закономерностей, которые свойственны технике и не относятся к другим общественным явлениям". Аналогичные точки зрения высказывали Г.И. Шеменев, В.И. Белозерцев [6] и другие философы, занимавшиеся проблемами техникознания.
Однако здесь есть предмет для размышления. Очень продолжительный каменный век, когда не существовало связей между весьма удаленными друг от друга народами, в частности, жившими на разных континентах, не существовало науки как средства теоретического осмысления действительности, характеризуется поразительным единообразием орудий труда.
На чем же основывается это единство строения различных классов технических объектов?
По мнению В.И. Белозерцева [7], общность технических средств определяется общностью свойств, сил и законов природы, лежащих в основе техники, общностью закономерностей развития материального производства и зависящих от него условий социальной жизни, общностью биологических и социальных потребностей человека, орудием удовлетворения которых служит техника, общностью вытекающих из всех факторов требований к функциям технических средств и их формам, общностью развития человеческого познания, принципов и закономерностей технического творчества.
Таким образом, первоосновой является закон природы. В природе, в естественных условиях этот закон действует, как указывалось выше, безотносительно к тому, знают его люди или нет. Однако для того, чтобы создать искусственное творение - технику, базирующуюся на том или ином законе природы, человек должен познать этот закон и научиться использовать его в своих интересах. Отсюда следует, что законы техники вторичны по отношению к законам природы и проистекают из законов природы.
Развитие техники, появление сложных искусственных технических систем приводит к проявлению и таких законов техники, которые не имеют аналогов в природе.
Таковы две особенности законов техники, которые подтверждают объективность их существования.
Отметим в заключение, что все законы техники делятся на законы строения техники или структурные законы, которые выражают существенную связь между расположенными в пространстве элементами и не отражают возможной тенденции развития технического объекта, и законы развития техники, выражающие тенденцию, направленность или порядок следования событий во времени (например, последовательный рост КПД, единичной мощности технического объекта (ТО) и т.д.).
7.2. Эволюция представлений о всеобщей связи явлений в развитии природы и обществаСуществуют многочисленные публикации, посвященные изучению истории открытия людьми естественных законов, действующих в природе и обществе. В частности, можно отметить работу В.Н. Панибратова [1]. Поэтому в настоящей работе упоминаются лишь отдельные этапы, оставившие заметный след в этой истории.
Исторически первой формой отражения всеобщей связи явлений была мифология.
Мифы - это произведения народной фантазии, представляющие собой наивную попытку объяснить реальный мир, окружающий человека.
В мифологическом мировоззрении мышление первобытного человека пытается построить воображаемую картину природы, аналогичную тому обществу, в котором он живет; Как отмечал советский философ Ф. X. Кессиди [9], в мифосознании нет ничего определенного, устойчивого, ограниченного и оформленного... Мифологическое воображение игнорирует реальные причинные связи, не различает природное и человеческое, естественное и сверхъестественное, чувственное и сверхчувственное, смешивает фантастическое с реально существующим, желаемое с действительным.
Тем не менее, чисто эмпирическое, интуитивное использование законов природы в создании техники уже имело место. Так, появление дубины в руках охотника или воина, по существу было олицетворением закона Ньютона, согласно которому сила (удара в данном случае) равна произведению массы на ускорение. Масса увеличивалась за счет дубины, ускорение - за счет увеличения радиуса движения центра массы вследствие определенной длины дубины.
Идеи античной мифологии нашли отражение в произведениях древнегреческих поэтов Гесиода и Гомера.
Гесиод, живший в 8 в. до н.э., самый древний поэт Греции, имя которого дошло до наших дней, высказал мысль, что "И от темной земли, и от Тартара, скрытого в мраке, и от бесплодной пучины морской, и от звездного неба все залегают один за другим и концы, и начала..." Это, по существу, идея о едином всеобщем первоначале, которая, под названием АРХЭ стала конституирующей идеей зарождающейся философии.
Гомер высказал представление о господстве судьбы или "мойры", как он ее назвал. Это было, по существу, зарождением понятия необходимости, которое в последующем явилось предпосылкой идеи закономерности в природе.
Следует заметить, что в неразрывной связи с мифологией возникла и религия, с помощью которой люди тоже пытаются осмыслить мир и собственное существование.
Следующий шаг в осмыслении окружающего нас мира был сделан в VI - IV веках до н.э. в учении пифагорейцев, которые впервые высказали идею всеобщей закономерности вселенной, подчиняющейся строго определенным математическим законам.
Это не привело к торжеству науки - на смену мифологии пришла пифагорейская мистика чисел.
Поэтому узловым пунктом в формировании идеи закономерности принято считать не учение пифагорейцев, а учение Гераклита о логосе (V век до н. э). Под логосом Гераклит понимал универсальную осмысленность, ритм и соразмерность бытия.
Демокриту принадлежит следующее утверждение: "Необходимо знать, что смерть - всеобщий закон, что борьба и есть справедливость, что все возникает в борьбе по непреложному закону необходимости". Таким образом, ему удалось очень близко подойти к пониманию одного из законов диалектики, открытого на много веков позднее.
Анализируя все сказанное выше, можно утверждать, что в античной греческой философии идея закономерности приобрела значительную определенность.
С наступлением времени христианства для идеи естественного закона не остается места. Упоминания о законах природы исчезают. Один из отцов церкви Августин Блаженный (354 - 430 г. г) объявил всеобщим законом волю бога, которая целиком свободна и недоступна ни познанию, ни какому бы то ни было внешнему влиянию, так что, например, судьба человеческой души в загробном мире определяется богом независимо от хорошего или дурного поведения человека [8].
Первым из средневековых мыслителей обращается к термину "закон природы" известный теолог ХIII в. Фома Аквинский. По его определению "закон природы" есть не что иное, как внушенный нам богом умственный свет, посредством которого мы, знаем, как надо вести себя и как надо житъ" [8]. Общее понятие закона тождественно в учении Фомы понятию диктата, предписания, веления. Разум, существующий в божественном духе, Фома называет "вечным законом"; и этот же разум, "так как он всем управляет... содержит в себе законы природы".
По мере развития капитализма и буржуазной государственности концепция христианского бога-самодержца, произвольно манипулирующего природными явлениями, постепенно сходит со сцены. Под законами природы начинают понимать общие и внутренние необходимые связи и отношения самих вещей и явлений природы.
Происходит становление особой гносеологической формы - закона науки как универсальной формы теоретического отражения действительности. Усложнение техники и технологии, диктуемая законами конкуренции необходимость их максимально эффективного использования и постоянного совершенствования потребовали нового уровня теоретического знания.
Эмпиризм уже не обеспечивал нужных решений. Для анализа результатов опыта и даже самой его постановки были необходимы руководящие научные положения: требовалось знание, которые сочетало бы в себе достоинства и всеобщности, и конкретности, которое обладало бы и объясняющей, и прогностической, и эвристической способностями. В самой науке по мере ее развития складывается необходимость в создании обобщающих теорий. Таков круг оснований, породивших классическую науку, а вместе с нею и научный закон.
Первые положения, названные впоследствии законами науки, встречаются в трудах И. Кеплера и Г. Галилея (XVI - XVII в).
Начало широкому употреблению понятия "закон природы" в науке нового времени положено Р. Декартом (1596 - 1650 г. г). Он говорит о законах природы как о "вторичных" (после бога) причинах всех видимых нами движений. Согласно Декарту, важнейшими атрибутами закона природы являются неизменность и вечность, благодаря чему его познание позволяет априори "предсказывать" действия по их причинам.
Для XVII - XVIII в. в. характерно широкое применение понятия закона в социально-политических теориях. По аналогии с естествознанием, позволившим, благодаря открытию законов природы, рационализировать многие сферы практической деятельности, мыслители этого времени стремятся открыть "естественные законы" человеческой природы, и общежития, с тем, чтобы рационализировать общественное устройство.
Так, Т. Гоббс (1588-1679), развивая идеологическую доктрину ранней буржуазии - теорию естественного права, кладет в ее основу понятие естественного закона.
Согласно Гоббсу, человек как часть природы, как материальное тело подчинен ее всеобщему закону - стремлению к самосохранению. Однако в обществе на пути осуществления этого закона встает специфическое свойство человеческого рода - взаимная агрессивность индивидов. Разрешение возникающего противоречия достигается благодаря разумности человека. Разум предписывает человеку определенные правила общежития, которые Гоббс и называет естественными законами. (Здесь закон - веление, предписание).
Французские философы-материалисты XVII - XVIII в. в. пришли к правильному решению вопроса об источнике закономерности природных явлений. Согласно Ж. Мелье "все существующее в природе может создаваться естественными законами движения и путем сочетания, комбинации и модификации частей материи" [1].
П. Гольбах (1723 - 1789 г. г) обратил внимание на структурность и системность. Структурность и системность, по его мнению, являются атрибутами как всей природы в целом, так и каждой из ее частей. Системность природы реализуется в форме существования всеобщих ее законов, а системность частей - в форме специфических законов. Отдельные "системы существ зависят от общей системы, от великого целого". В то же время "всякая вещь может действовать и двигаться только определенным образом, т.е. согласно законам, зависящим от ее собственной сущности, собственного сочетания и собственной природы". Отсюда - необходимость взаимосвязи общих и специфических законов.
Большой вклад в развитие категории "закон" внес Гегель. Едва ли не главной его заслугой в этом вопросе является раскрытие эволюции научного познания от простейших эмпирических законов к теоретическим. Но в контексте настоящего изложения следует отметить, что Гегель постоянно подчеркивая несовершенство законов, открываемых эмпирическим естествознанием, поскольку они "не содержат в себе доказательства своей необходимости". Учтем это при последующем рассмотрении законов развития техники.
Важный шаг сделал Л. Фейербах, который с последовательно материалистических позиций отстаивал объективность законов природы, их первичность и определяющую роль по отношению к сознанию.
В трудах К. Маркса и Ф. Энгельса концепция закона получает новое содержание. Это связано, в частности, с открытием К. Марксом особого типа объективных законов - законов общественного развития.
Именно в этой области особенно четко видно, что любой конкретный закон зависит в своем возникновении и существовании от определенных материальных условий. Сначала он существует поэтому лишь как и возможность только с изменением условий переходит в действительное существование "Движущая сила социальной анархии производства, - говорит Ф. Энгельс, характеризуя буржуазную экономику, - превращает возможность бесконечного усовершенствования машин... в принудительный закон для каждого отдельного промышленного капиталиста, в закон, повелевающий ему беспрерывно совершенствовать свои машины под страхом гибели. Считая это недостатком капитализма, И.В. Сталин выдвинул тезис об отсутствии морального старения техники при социализме. Действительно, монополизация производства техники с одной стороны, высокая степень изоляции от капиталистического мира с другой, ликвидировали конкуренцию и это, в конечном счете, привело к отставанию СССР от Западного мира во многих мирных областях техники. И это не исключение. Япония, пытавшаяся в прошлые века жить изолированно от мира, тоже расплачивалась за это технической отсталостью. Интенсивные меры, предпринятые ею, начиная с 20-х г. г. нашего столетия, по укреплению деловых международных контактов помогли Японии выдвинуться в число передовых в техническом отношении стран мира.
Заметим, что приведенное выше высказывание Ф. Энгельса об усовершенствовании техники базируется исключительно на понятиях объективно существующих законов природы и законов общественного развития.
Ему не потребовалось вводить новую категорию - законы развития техники.
Классики марксизма выдвинули и обосновали положение об историчности законов природы и общества. Демонстрируя необходимость исторического подхода, а также диалектическое единство необходимости и случайности, Энгельс в качестве образца научного подхода приводит теорию Дарвина, революционность которой состоит в новом понимании вида. Если раньше вид представлялся в качестве неизменной, абсолютно устойчивой формы, безразличной к случайным внутривидовым различиям, то суть дарвиновской концепции состоит, прежде всего, в истолковании вида, как изменяющегося, развивающегося на базе этих случайностей, в понимании его как внутренне противоречивого единства противоположных тенденций наследования и изменения признаков. Тем самым изучение видов как предмет биологии превращается в исследование их истории, их относительной необходимости, пробивающейся через массу случайностей и выступающей как их внутренний закон.
Указанная историчность законов нашла отражение в определении закона, данном в "Философской энциклопедии": "Закон... необходимая, внутренне присущая природа явлений реального мира тенденция изменения, движения, развития, определяющая общие этапы и формы процесса становления и самоорганизации, конкретных развивающихся систем явлений природы, общества и духовной культуры человечества".К. Маркс, посвятивший несколько лет изучению истории и теорий машин, дал формулировку некоторых законов техники.
Его формулировки носят лишь качественный характер. Позднее эти законы получили математическую аппроксимацию и дальнейшее развитие, в частности, в работах А.И. Половинкина, но, тем не менее, заслуги К. Маркса в открытии законов техники нельзя недооценивать. Ниже приводятся данные К. Марксом формулировки открытых им законов техники [10].
К. Маркс сформулировал закон возникновения и возрастания потребностей-функций, т.е. тех потребностей, которые реализуются с помощью новых технических средств. Формулировка К. Маркса такова.
Когда возникает потребность, которая уже не может быть удовлетворена старыми техническими средствами, когда удовлетворение потребности дает прибавочную стоимость и когда материальные условия ее решения уже имеются налицо или, по крайней мере, находятся в процессе становления, тогда неизбежно создают (изобретают) новые технические средства, удовлетворяющие эту потребность. Удовлетворенная первая потребность, действие удовлетворения и уже приобретенное орудие удовлетворения ведут к новым потребностям, и это порождение новых потребностей является первым историческим актом в создании новых технических средств.
К. Марксу принадлежит открытие закона постоянного развития техники, согласно которому техника развивается постоянно, только исключительные события могут на некоторое время затормозить ее развитие. При этом военная техника развивается быстрее, чем техника мирного применения.
Изучая проблемы развития общества и экономики, благодаря комплексному рассмотрению развития средств производства и мировой техносферы, Маркс сформулировал два закона развития техносферы:
Закон ускоренного развития средств производства:
Разделение труда неизбежно влечет за собой еще большее разделение труда, применение машин - более широкое применение машин, производство в крупном масштабе - производство в еще более крупном масштабе, поскольку, чем больше разделение труда, концентрация технических средств и масштабы производства в одном месте, тем ниже себестоимость производимой продукции.
Этот закон действовал в докапиталистических формациях, действует и ныне.
Закон развития техносферы.
Технический прогресс одной отрасли техники (или одного класса технических объектов) вызывает потребность прогрессивного развития других отраслей (классов ТО), которые связаны с первой и имеют более низкий технический уровень и относительно низкую производительность труда.
Например, развитие радиоэлектроники потребовало более глубокой очистки полупроводниковых материалов.
К. Маркс сформулировал также некоторые закономерности развития техники.
Закономерность сохранения и преодоления старых форм. Первые образцы принципиально новых по конструкции машин сохраняют формы старых, заменяемых ими орудий и только с дальнейшим развитием... и накоплением практического опыта форма машины начинает всецело определяться принципами механики и потому совершенно освобождается от старинной формы того орудия, которое превращается в машину.
Закономерность создания машин. Многие машины создаются путем преобразования ручного орудия, в результате которого рабочий орган (инструмент) при сохранении старой функции и формы увеличивается в размерах и становится не орудием человека, а орудием машины, имеющей двигатель. Так, например, на смену лопате приходит экскаватор.
Закономерность создания машины, связанная со специализацией техники. Мануфактурный период упрощает, улучшает и разнообразит рабочие инструменты путем приспособления их к исключительным особым функциям частичных рабочих. Тем самым он создает одну из материальных предпосылок машины, которая представляет собою комбинацию многих простых инструментов.
Закономерность исторического развития технических объектов. Простые орудия, накопление орудий, сложные орудия, приведение в действие сложного орудия одним двигателем - руками человека, приведение этих инструментов в действие силами природы; машина, система машин, имеющая автоматически действующий двигатель.
Переходя к современному этапу эволюции представлений о законах техники, следует заметить, что существенный вклад в этот вопрос внес Ю.С. Мелещенко [5], отметивший следующие закономерные тенденции в развитии техники:
постоянное расширение ассортимента природных материалов, применяемых в технике;
создание новых материалов;
постоянное совершенствование свойств применяемых материалов;
постоянное снижение удельного расхода материалов в технических объектах;
использование новых физических, химических и биологических принципов действия;
использование все более глубинных и мощных источников энергии;
постоянный рост интенсивности применяемых процессов за счет повышения таких параметров как давление, температура, скорость, напряжение и т.д.;
постоянное возрастание целенаправленности использования энергетических и др. ресурсов, повышение КПД;
углубление дифференциации и специализации средств труда и технических систем, их элементов;
последовательное усложнение технических объектов и их интеграция в органически соединенные комплексы;
повышение уровня механизации и автоматизации трудовых процессов.
Оригинальное исследование провел С.А. Семенов [11], который на основе изучения техники каменного века сумел выявить и сформулировать законы развития техники, не потерявшие значения и сегодня:
рост механической мощности и КПД орудий, расширение источников энергии;
увеличение скорости движения;
повышение точности и прецизионности;
автоматизация орудий труда;
дифференциация орудий труда;
специализация и расширение производства;
усложнение орудий:
упрощение орудий;
появление новых конструкционных материалов;
появление новых технологий;
устойчивое сохранение и использование старых орудий труда наряду с новыми, более совершенными.
Г.С. Альтшуллер [12], работая над созданием теории решения изобретательских задач, открыл еще ряд законов техники, к которым относятся следующие.
Закон условий принципиальной жизнеспособности технической системы.
Условиями принципиальной жизнеспособности ТС являются:
наличие и минимальная работоспособность основных частей системы;
сквозной проход энергии по всем частям системы;
согласование ритмики (частоты колебаний, периодичности) всех частей системы.
Закон увеличения степени идеальности системы. Развитие всех систем идет в направлении увеличения степени идеальности, т.е. приближения к идеальному техническому решению. При этом техническое решение считается идеальным, если оно имеет одно или несколько из следующих свойств:
размеры ТО приближаются или совпадают с размерами обрабатываемого или транспортируемого объекта, а чистая масса ТО намного меньше массы обрабатываемого объекта;
масса и размеры ТО или его главных функциональных элементов приближаются к нулю, а в предельном случае равны нулю (когда устройства вообще нет, но необходимая функция выполняется);
время обработки объекта приближается к нулю или равно нулю;
КПД приближается к единице или равен единице, а расход энергии приближается к нулю или равен нулю;
ТО функционирует бесконечно длительное время без ремонта и остановок;
ТО функционирует без человека или при его минимальном участии;
ТО не оказывает отрицательного влияния на человека и окружающую среду.
Закон неравномерности развития частей системы: чем сложнее система, тем не равномернее развитие ее частей.
Закон перехода в надсистему. Исчерпав возможности развития, система включается в надсистему в качестве одного из се элементов; при этом дальнейшее развитие идет на уровне надсистемы.
Закон перехода с макроуровня на микроуровень. Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.
Закон увеличения степени вепольности.
Под веполем автор понимает минимальную техническую систему, состоящую из трех элементов: обрабатываемого вещества, обрабатывающего вещества (инструмента) и поля. Таким образом, увеличение степени вепольности означает повышение сложности технического объекта, создание технических систем, включающих все большее количество веполей.
Исследованием и формулированием законов техники кроме названных авторов занимались также Я. Дитрих [13], А.Ф. Каменев [14] и др.
Анализ работ названных выше авторов позволяет отметить следующее:
все перечисленные законы и закономерности носят чисто эмпирический характер и не содержат попыток теоретического обобщения;
перечисленные законы носят качественный характер и не позволяют дать их количественную оценку;
законы, сформулированные разными авторами сильно различаются по степени подробности изложения и глубине обобщения.
Поэтому понятна актуальность унификации требований к формулированию законов техники и необходимость повышения теоретического уровня осмысления законов техники.
Выполнение этих задач взял на себя А.И. Половинкин [15, 16], результаты работы которого изложены ниже.
7.3. Требования к отбору и формулировке законов техникиА.И. Половинкин [16] предложил следующие общие требования, которым должны удовлетворять законы техники.
Формулировка закона должна быть по форме лаконичной, простой, изящной, а по содержанию отвечать определениям закона [3, 2].
Формулировка закона техники должна быть обобщенной и отражать очень большое число известных и возможных фактов, т.е. закон должен допускать эмпирическую проверку на существующих или специально полученных фактах, имеющих количественную или качественную форму. При этом формулировка закона должна быть настолько четкой, что два человека, независимо подбирающие и обрабатывающие фактический материал, должны получить одинаковые результаты проверки.
Формулировка закона должна не только констатировать, что где, когда происходит (т.е. упорядочивать, и сжато описывать факты) но еще по возможности отвечать на вопрос, почему так происходит.
Формулировка закона должна быть автономно независимой, т.е. к законам относятся лишь такие обобщенные высказывания, которые не могут быть логически выведены из других законов техники.
Формулировка закона техники должна учитывать взаимосвязи: техника - предмет труда, человек - техника, техника - природа, техника - общество.
Формулировка закона техники должна иметь предсказательную функцию, т.е. предсказывать новые неизвестные факты, которые могут быть достаточно очевидными, а иногда парадоксальными.
Формулировка всех законов техники должна иметь четкую определенную единую понятийную основу.
Законы техники должны основываться на реализации потребностей человека и являются по своей сущности законами целеосуществления.
Законы техники объединяются принципом сопряжения возможностей техники с возможностями человека.
Законы техники должны отражать принцип технологичности, т.е. новая конструкция должна быть такой, чтобы ее можно было осуществить при помощи существующих средств производства на основе существующей технологии.
Законы должны отражать социально-экономическую целесообразность создаваемой техники.
Законы техники могут иметь качественную или количественную формулировку.
Главная функция законов техники - быть явно полезными при решении задач анализа существующих ТО и создания новых ТО, прогнозирования развития определенного класса ТО и пр.
В соответствии с изложенными требованиями ниже сформулирован ряд законов техники. Большинство из них приводит А.И. Половинкин в работах [15, 16].
7.4. Законы развития техники 7.4.1 Закон прогрессивной эволюции техникиДействие закона прогрессивной эволюции в технике аналогично действию закона естественного отбора, который Ч. Дарвин открыл в живой природе.
Закон имеет следующую формулировку. В технических объектах с одинаковой функцией переход от поколения к поколению вызван устранением выявленного главного дефекта (дефектов), связанного, как правило, с улучшением критериев развития, и происходит при наличии необходимого научно-технического уровня и социально-экономической целесообразности следующими наиболее вероятными путями иерархического исчерпания возможностей конструкции:
а) сначала при неизменном физическом принципе действия и техническом решении улучшаются параметры ТО до приближения к глобальному экстремуму по значениям параметров;
б) после исчерпания возможностей цикла а) происходит переход к более рациональному техническому решению (структуре), после чего развитие опять идет по циклу а). Циклы а) и б) повторяются до приближения к глобальному экстремуму по структуре для данного принципа действия;
в) после исчерпания возможности циклов а) и б) происходит переход к новому физическому принципу действия, после чего развитие опять идет по циклам а) и б). Циклы а) и б) повторяются до приближения к глобальному экстремуму по принципу действия для множества известных физических эффектов.
При этом в каждом случае перехода от поколения к поколению в соответствии с частными закономерностями происходят изменения конструкции, корреляционно связанные с характером дефекта у предшествующего поколения, а из всех возможных изменений конструкции реализуется в первую очередь то, которое позволяет устранить дефект при минимальных интеллектуальных и производственных затратах, т.е. здесь проявляется принцип наименьшего действия [15, 16].
В формулировке закона использовано понятие "глобальный экстремум". Математически строгое определение этого термина дается в математической дисциплине, называемой вариационным исчислением. Смысл термина можно понять, исходя из следующего рассуждения. Функции нескольких переменных могут иметь экстремумы, соответствующие определенным комбинациям значений переменных. Это - локальные экстремумы. Очевидно, что множество локальных экстремумов позволяет выделить общий для них глобальный экстремум функции нескольких переменных.
В процессе совершенствования объекта в рамках одного физического принципа действия критерии развития обычно меняются не равномерно. В первое время после перехода от одного цикла к другому рост совершенствуемого критерия экспоненциально ускоряется, а потом затухает, что собственно, и говорит об исчерпании данного цикла. Поэтому зависимость значения критерия развития от времени имеет S-образную форму и называется S-функцией. Иногда ее называют жизненным циклом изделия.
Интересно отметить, что такая форма жизненного цикла свойственна не только техническим объектам, но и объектам природы. Она и открыта была в 1845 г. Верхолстом при изучении кривых роста популяций живых существ.
Рост популяций в заданной среде описывается дифференциальным уравнением [23]:
,
где К - коэффициент, характеризующий рождаемость; D - коэффициент, характеризующий смертность; N - коэффициент, характеризующий способность поддерживать популяцию.
Рис.7.1 Рост народонаселения на земле
В качестве примера на рис.7.1 приведена кривая роста народонаселения на земном шаре с 1850 г., с учетом прогноза до 2075 г.
Рис.7.2 Динамика производительности колонн синтеза аммиака.
На рис.7.2 показана динамика, за период с 1910 г. до 1990 г., производительности колонн синтеза аммиака. Из рис.7.2 следует, что физический принцип действия, заложенный Ф. Габером в основу связывания атмосферного азота с получением аммиака на катализаторе при высоком давлении, использован до предела. Создавать реакторы более высокой производительности на этом принципе не позволяют мощности современного станочного оборудования, транспортные устройства и др.
Поэтому сейчас исследуются другие принципы: микробиологическое связывание азота, плазмохимические процессы и др.
Аналогичный характер носит динамика процессов, происходящих в экономике - рост объемов производства, потребления энергоресурсов и т.д. Это демонстрирует рис.7.3.
Рис.7.3 Динамика потребления энергии в мире (млрд. т. усл. т)
Самое важное приложение закона прогрессивной эволюции заключается в построении на его основе методологии системного иерархического выбора глобально-оптимальных конструкторско-технологических решений - от выбора рациональной функциональной структуры до оптимального технического решения.
Методология ориентирована на изучение и использование всех возможных путей улучшения ТО. Если при этом решение каждой задачи будет выполняться с достаточно полным информационным обеспечением и будет находиться глобально оптимальное решение, то можно гарантировать, что создаваемый ТО по уровню будет соответствовать мировым достижениям.
Следует заметить, что для перехода к использованию нового физического принципа действия не всегда нужно ждать исчерпания ресурсов уже используемого физического принципа действия (ФПД).
Если при наличии необходимого научно-технического потенциала переход к новому техническому решению или принципу действия обеспечивает получение дополнительной эффективности, существенно превышающей дополнительные интеллектуальные и производственные затраты, то может произойти скачок к новому техническому решению или принципу действия и без исчерпания возможностей совершенствования старого технического решения. Нередко это приводит к параллельному развитию выполнения одинаковых функций на основе разных ФПД. Например: получение электроэнергии на тепловых и атомных электростанциях; совершенствование тепловозов и электровозов; строительство кирпичных и панельных жилых домов.
Большое практическое значение в рамках рассматриваемого закона имеет изучение закономерности изменения критериев развития на протяжении использования одного принципа действия, т.е. изучение S-функций.
Это позволяет установить, насколько недоиспользованы возможности реализованного в техническом объекте ФПД, Если эти возможности имеют значительные резервы, на основе прогнозирования, базирующегося на экстраполяции S-функции, можно сформулировать конкретное задание на улучшение основных показателей ТО.
Если же анализ показывает, что возможности применяемого принципа действия практически исчерпаны, делается вывод о необходимости поиска нового ФПД.
Для осуществления экстраполяции S-функции удобнее иметь не график или таблицу, а аналитическую аппроксимацию функции.
Известно несколько методов аналитического описания S-функции [17]:
логистическая функция или кривая Перля-Рица
;
запаздывающая логистическая функция
;
63-процентная функция
;
формула Гомпертца
;
формула Джонсена
;
квадратичная логистическая функция
.
В перечисленных выражениях K, b, c - константы, t - время. Недостатком этих формул является их "жесткость", обусловленная наличием трех констант, что снижает точность аппроксимации.
А.И. Попов и Е.Н. Капитонов в результате компьютерного анализа достаточно значительного количества статистических данных получили уравнение:
, (7.1)
где К - коэффициент, характеризующий интервал изменения у между двумя перегибами S-функции; b - коэффициент, характеризующий продолжительность временного интервала (т.е. изменения аргумента t) между двумя перегибами S-функции; с - коэффициент, соответствующий времени появления первого перегиба S-функции; D - коэффициент, характеризующий исходное значение функции у.
Следует заметить, что прогнозирование по S-функции, называемое иначе статистическим прогнозированием, является наиболее старым и распространенным, но далеко не единственным методом прогнозирования.
Проблеме прогнозирования посвящена обширная литература, из которой упомянем, в частности, работы [17,18].
Этот закон [16] отражает изменения, происходящие в процессе исторического развития как отдельных классов ТО, так и техники в целом.
Его можно сформулировать следующим образом. ТО, предназначенные для обработки материалов, имеют четыре стадии развития, связанные с реализацией четырех фундаментальных функций, (см. закон соответствия между функцией и структурой):
на первой стадии ТО реализует только технологическую функцию, стальное делает человек;
на второй стадии развития ТО реализует технологическую и энергетическую функции;
на третьей стадии добавляется функция управления;
на четвертой стадии добавляется функция планирования.
Переход к каждой очередной стадии происходит при исчерпании природных возможностей человека по дальнейшему увеличению производительности и др. качественных показателей, а также при наличии необходимого научно-технического уровня и социально-экономической целесообразности.
Хронологические рамки осуществления перечисленных стадий в мировой технике приведены в табл.7.1.
Таблица 7.1
Стадия развития техники
Выполняемая функция | Начало стадии | |||
Каменный век | XVIII век | Середина XX века | Конец XX века | |
Технологическая | ТО | ТО | ТО | ТО |
Энергетическая | человек | ТО | ТО | ТО |
Управления | человек | человек | ТО | ТО |
Планирования | человек | человек | человек | ТО |
Практическое использование закона стадийного развития связано с получением в процессе исследования технического объекта ответов на следующие вопросы:
На какой стадии развития находится изучаемый технический объект?
Ограничивают ли возможности человека существенное улучшение основных показателей ТО?
Имеются ли необходимые научно-технические возможности для перехода на следующую стадию?
Имеется ли социально-экономическая целесообразность перехода на следующую стадию [15, 16] ?
Следует обратить внимание на тот интересный факт, что, чем больше функций передается от человека к технике, тем глубже инженер должен знать эргономику - науку о физических и психический возможностях человека.
Из закона стадийного развития техники вытекают две важные закономерности:
Каждая стадия развития техники, как правило, имеет два периода развития: сначала основная фундаментальная функция реализуется с помощью универсального технического средства, затем происходит дифференциация и специализация технических средств. Так, на первой стадии развития техники был пройден путь от общего рубила до 500 разновидностей одних только молотков; на второй стадии от мускульной энергии пришли к современному разнообразию источников энергии; на третьей - от универсальной ЭВМ к специализированным ЭВМ и микропроцессорам.
При этом на каждой новой стадии резко возрастает относительное разнообразие технических объектов и область их применения в связи с появлением широких возможностей конструктивного изменения и приспособления подсистемы, реализующей очередную фундаментальную функцию, и комбинирования этой подсистемы с различными вариантами других подсистем технического объекта.
Чем большее число фундаментальных функций реализовано с помощью технических средств, тем меньше ограничений накладывают естественные возможности человека, тем больше возможностей открывается для совершенствования технического объекта и тем выше темпы технического прогресса.
В качестве иллюстрации на рис.7.4 показана динамика регистрации изобретений в СССР в период с 1925 г. по 1992 годы.
Рис.7.4 Динамика изобретательства в СССР
7.4.3 Закон расширения множества потребностей-функцийДля открытия новых направлений развития техники важно предусмотреть появление новых потребностей в обществе. В этом отношении полезен закон расширения множества потребностей-функций. Выше приводилась формулировка этого закона, данная К. Марсом.
Современная формулировка звучит следующим образом.
При наличии необходимого потенциала и социально-экономической целесообразности возникшая новая потребность удовлетворяется с помощью впервые созданных технических средств; при этом возникает новая функция, которая затем существует до тех пор, пока ее реализация будет обеспечивать сохранение и улучшение жизни людей. Число таких потребностей-функций монотонно возрастает по экспоненциальному закону
,
где Р0 - число потребностей-функций к моменту t = 0; a - эмпирический коэффициент; t - время в годах [15, 16].
Полезно отметить, что трудом ряда ученых (А. Маслов и др.) удалось установить приоритет потребностей, который позволяет судить о направлениях развития техники.
А. Вечные потребности, значимость которых всегда остается неизменно высокой:
Обеспечение пищей.
Обеспечение жильем.
Обеспечение одеждой.
Обеспечение оборонной техникой.
Защита от преступных нападений.
Защита от природных катастроф.
Защита от болезней и болевых ощущений.
В. Вечные потребности, значимость которых сильно возросла в XX в:
Защита от больших искусственных катастроф и локальных аварий в промышленности, на транспорте и т.д.
Получение новой информации, сбор, хранение, обработка и передача информации.
Красота окружающей среды.
Обеспечение индивидуально и общественно полезного досуга людей.
С. Новые потребности, возникшие во второй половине XX в. и по значимости близкие к вечным.
Защита от глобального уничтожения человечества.
Обеспечение нормальной пресной водой.
Обеспечение нормальным воздухом.
Обеспечение нормальных условий сна.
Все это обобщенные первичные потребности, которые имеют многоуровневое иерархическое разделение на частные первичные потребности. Они, в свою очередь, вызывают вторичные потребности 1-го уровня в производстве ТО, далее 2-ой уровень и т.д.
7.4.4 Закон относительного постоянстваЭтот закон можно сформулировать следующим образом: не существует изделий, не имеющих отклонений относительно некоторого материального образца. Ошибкой считается лишь превышение допустимого отклонения.
Для конструктора и изготовителя этот закон имеет важное значение, поскольку он представляет собою основу определения границ допускаемых изменений материального комплекса с позиций эффективности технических средств.
В машиностроении оценка допускаемых отклонений от номинальных параметров, является предметом изучения отдельной научной дисциплины "Основ взаимозаменяемости". Здесь учитывается, с одной стороны, возможность применяемого технического оборудования обеспечить ту или иную точность выполнения операции, с другой стороны, возможность ТО, изготовленного с определенными отклонениями от номинальных характеристик, выполнять заданные функции.
Чтобы предвидеть отклонения свойств изделий, необходимо понимать, что производство представляет собою стохастический процесс. Стохастический или случайный процесс является результатом действия множества элементов со случайными свойствами - элементов, которые однако можно описать не случайным образом, а на основе теорий вероятностей.
Доступный пример стохастического процесса - поведение студентов. Оно носит случайный характер. Пример - очередность выхода из аудитории после звонка. Длительное наблюдение позволит предсказать некоторую вероятность этой очередности [16].
Допуски и посадки, определяемые в соответствии с законом относительного постоянства, лежат в основе стандартизации типовых деталей и инструмента, применяемого в различных отраслях производства. Научно-технический прогресс способствует повышению точности процессов и изделий. Поэтому действие закона связано с развитием техники.
7.4.5 Закон возрастания разнообразия технических объектовРазнообразие технических объектов, составляющих техносферу мира, страны или отрасли, а также разнообразие отдельного класса технических объектов, имеющих одинаковую обобщенную функцию, в связи с необходимостью наиболее полного удовлетворения человеческих потребностей, обеспечения наиболее высоких темпов повышения производительности труда и улучшения других критериев прогрессивного развития техники со временем монотонно и ускоренно возрастает по экспоненциальному графику
,
где N0 - количество разновидностей технических объектов, составляющих техносферу в целом или отдельный класс ТО, в момент, принятый за начало отсчета; Nt - то же через время t после начала отсчета; t - время (в годах); k - эмпирический коэффициент.
Возрастание происходит за счет появления новых потребностей-функций, качественной и количественной специализации функций, а также за счет дифференциации технических объектов, выполняющих качественно и количественно одинаковую функцию, но имеющих различия по конструкции.
Это - эмпирической закон, выведенный на основе большого статистического материала. В качестве иллюстрации в табл.7.2 приведены данные по количеству моделей легковых, включая гоночные, спортивные и рекордные, и грузовых, включая седельные тягачи и самосвалы, автомобилей.
Эти данные, заимствованные из работы [20], подтверждают ускоренный рост разнообразия выпускаемых ТО.
Нарушения общей тенденции, приходящиеся на годы гражданской войны, последовавшей после Октябрьской революции 1917 г., и на годы Великой Отечественной войны (1941 - 1945) легко объяснимы. Выпуск бронетехники и специальных машин военного назначения в табл.7.2 не учтен.
Возрастание разнообразия технических объектов, как и объектов природных, не может происходить безгранично. Вспомним, например, что все многообразие и многоцветие природы слагается из химических элементов, которых, немногим более сотни. Поэтому, наряду с законом возрастания разнообразия технических объектов, в природе и технике действует излагаемый ниже закон ограниченного разнообразия.
Таблица 7.2
Количество моделей автомобилей, выпускаемых отечественными автозаводами в 1896 - 1983 г. г.
Годы | Количество выпускаемых моделей | |
легковые автомобили | грузовые автомобили | |
1896 - 1900 | 2 | 0 |
1900 - 1910 | 10 | 4 |
1911 - 1917 | 13 | 4 |
1922 - 1932 | 5 | 8 |
1933 - 1941 | 20 | 36 |
1941 - 1945 | 6 | 5 |
1946 - 1956 | 53 | 40 |
1957 - 1969 | 74 | 67 |
1970 - 1982 | 38 | 68 |
Применительно к технике закон может быть сформулирован следующим образом.
Многообразие, являющееся необходимым условием существования единства сложных технических средств и способов их действия, должно иметь границы.
Правда, известно, что увеличение различий между характеристиками изделий объективно обусловлено требованием их общественно-технической адекватности в непрерывно усложняющемся мире, где действует закон возрастания разнообразия технических объектов.
Но, с другой стороны, чем шире используется данное техническое средство, тем в большей мере приобретает значение закон ограниченного разнообразия. Пример - изготовление разными заводами телевизоров с унифицированными схемами.
Закон проявляет себя в унификации и стандартизации.
7.4.7 Закон возрастания сложности технических объектовКачественную историческую картину возрастания сложности ТО описал К. Маркс. Об этом шла речь выше. Ориентировочную количественную картину дает табл.7.3.
Таблица 7.3
Возрастание сложности ТО
Время | Приближенное число классов ТО | Среднее число деталей в наиболее сложных ТО |
100 000 лет назад | 5 | 1 |
10 000 лет назад | 50 | 10 |
1000 лет назад | 1000 | 100 |
Настоящее время | 50000 | 10000 |
Несколько более подробную градацию ТО по сложности с прогнозом на будущее дал Г.Н. Поворов [16], см. табл.7.4.
Таблица 7.4
Сложность систем по Г.Н. Поворову
Уровень сложности | Примеры ТО | |
1. | Простые предметы | Одноэлементные орудия раннего каменного века (рубило и др.). |
2. | Превращающиеся предметы | Использование огня при изготовлении керамической посуды. |
3. | Сложные предметы | Составные орудия из жестко соединенных деталей (ткани). |
4. | Простые системы | Машины и устройства с числом элементов 10 ¸ 103 и определенным детерминированным их взаимодействием (машины XV - XVI в. в) |
5. | Сложные системы | Технические системы с числом элементов 104 ¸ 107 и выше с массовым случайным их взаимодействием, например АТС. |
6. | Превращающиеся системы | Системы, способные к росту, развитию, самоорганизации. Число элементов 108 ¸ 1030. |
7. | Парадоксальные системы | Системы столь обширные и сложные, что они способны управлять пространством и временем, и изменять космические формы своего бытия. Число элементов 1030 ¸ 10200. |
А.Н. Половинкин [16] предпринял попытку вывести универсальный показатель сложности.
Показатель сложности S определяется положительным числом, большее значение которого соответствует более сложному ТО.
Анализ показывает, что интегральный показатель S имеет две функциональные связи:
, (7.2)
, (7.3)
где Y = (y1, y2... yn) - кортеж, каждая компонента которого представляет собою практически важный показатель, на который может оказать существенное негативное влияние возрастание сложности ТО.
X = (x1, x2... xm) –
кортеж, каждая компонента которого представляет собою параметр сложности, изменение которого влияет на S, и, соответственно, на компоненты Y.
Отметим, что кортеж - это упорядоченный набор из n элементов, называемых его компонентами или координатами. Наиболее естественной интерпретацией кортежа является вектор n-мерного пространства или упорядоченная совокупность его координат.
Посредством кортежа удобно характеризовать объекты, описываемые при помощи п независимых друг от друга признаков.
Компоненты Y:
у1 - трудоемкость разработки ТО;
y2 - трудоемкость изготовления, сборки, отладки ТО;
y3 - трудоемкость эксплуатации и обслуживания;
y4 - трудоемкость ремонтных работ;
y5 - трудоемкость обучения специалистов.
Компоненты X:
x1 - число деталей в ТО;
x2 - число соединений между деталями;
x3 - число различных материалов и веществ, используемых при изготовлении ТО;
x4 - суммарное число входов и выходов потоков вещества, энергии, информационных сигналов;
x5 - число физических, химических и биологических эффектов, используемых в ТО;
x6 - средняя относительная точность изготовления деталей, к которым предъявляются наиболее высокие требования;
x7 - относительная точность главных функциональных показателей ТО.
Представляется целесообразным дать обобщенную формулу, показателя сложности:
.
Отсюда формулировка закона:
Сложность технических объектов с одинаковой функцией, равная показателю
в силу действия факторов стадийного развития техники и прогрессивной конструктивной эволюции технических объектов от поколения к поколению монотонно и ускоренно возрастает.
Следствием возрастания сложности ТО, характеризуемой показателем S, является возрастание трудоемкости изготовления и эксплуатации ТО, характеризуемое показателем Y. Для количественной оценки динамики Y зависимость (7.2) должна быть конкретизирована для каждого класса ТО.
7.4.8 Закон убывающей полезностиЭтот закон является общим, действующим как в живой природе, так и в технике.
В живой природе он проявляется в снижении работоспособности стареющего организма, в снижении урожайности плодоносящих растений и т.д.
В технике закон проявляется как в области ее совершенствования, так и в области эксплуатации технического объекта. Он может быть сформулирован следующим образом.
Затраты на совершенствование технического объекта в пределах одного физического принципа действия по мере исчерпания резервов ФПД приносят все меньший эффект.
По мере старения технического объекта, находящегося в эксплуатации, частота его отказов возрастает, а расходы на восстановление растут, пока не достигнут размеров получаемого от восстановления эффекта.
Следовательно, существует срок службы ТО, после которого восстановление и дальнейшая эксплуатация ТО становятся нецелесообразными.
7.5. Законы строения техникиРассмотренные выше законы характеризовали общие тенденции в развитии техники.
Не менее важное значение имеют законы, определяющие строение техники, ее композицию. Слово "композиция" означает сложение, сочетание, составление, т.е. композиция предопределяет
структурное и пластическое решение формы промышленных изделий.
Средствами композиции являются пропорциональность, масштабность, ритм, модуль, масса, симметрия и асимметрия и др. [22].
Удалось сформулировать ряд законов строения техники, позволяющих оптимизировать использование средств композиции.
Соответствие между функцией и структурой на протяжении веков изучали философы и биолога на примерах живой природы. Благодаря наличию этого соответствия, биологи научились по отдельным костям воспроизводить скелет, а по скелету - внешний вид живого существа, которого они никогда не видели.
Такое же соответствие обнаруживается и в правильно спроектированном техническом объекте. Поэтому можно сформулировать следующий закон [15, 16].
Каждый элемент технического объекта выполняет хотя бы одну функцию по обеспечению функционирования всего объекта. Поэтому исключение элемента приводит к ухудшению какого-либо показателя ТО или прекращению его функционирования вообще. Совокупность всех таких соответствий в техническом объекте представляет собой функциональную структуру, изображаемую в виде ориентированного графа, который отражает системную целостность ТО и соответствие между его функцией и структурой (конструкцией).
Следует заметить, что графом называется схема, на которой кружками или прямоугольниками обозначены элементы технического объекта, которые а этом случае называются вершинами графа, а функциональные связи между элементами изображаются линиями, соединяющими соответствующие вершины. Эти линии называются ребрами графа. Если на ребрах стрелками указан порядок прохождения вершин, граф называется ориентированным. Приведенное определение является упрощенным и может быть использовано лишь при построении функциональных структур. Строгое определение при необходимости можно найти в книге А.А. Зыкова [19].
Закон соответствия между функцией и структурой лежит в основе построения функциональных структур конкретных ТО, а также обобщенных функциональных структур широких классов ТО.
Так, например, обрабатывающие (технологические) машины состоят из четырех подсистем (элементов) S1, S2, S3, S4, реализующих соответственно четыре фундаментальных функции:
Ф1 - технологическая функция - обеспечивает превращение исходного сырья а0 в конечный продукт Ак;
Ф2 - энергетическая функция - превращает вещество (топливо) или извне полученную энергию W0 в конечный вид энергии Wк, необходимый для реализации функции Ф1;
Ф3 - функция управления - осуществляет управляющие воздействия u1, u2 на подсистемы S1, S2 в соответствии с заданной программой Q и полученной информацией и10, и20 о количестве и качестве выработанных конечного продукта Aк и конечной энергии Wк;
Ф4 - функция планирования - собирает (получает) информацию Q0 о произведенном продукте Ак и сопоставляет с программой Q, качественные и количественные характеристики конечного продукта.
В соответствии с изложенным обобщенная функциональная структура технологической машины выглядит, как показано на рис.7.5.
Эта обобщенная структура при необходимости может быть конкретизирована для отдельного класса технических объектов, отдельных конкретных ТО.
Анализ функций различных ТО позволяет накапливать и формировать базы данных по формализованным описаниям функций элементов ТО и функциональным структурам ТО. Фрагмент такой базы данных приведен в табл.7.5. Подобные базы данных могут быть эффективно использованы в различных методах поискового Проектирования и конструирования, при проведении функционально-стоимостного анализа ТО и технологий, при построении информационно-поисковых систем для поддержки проектно-конструкторской деятельности [15].
Рис.7.5 Обобщенная функциональная структура технологической машины
Таблица 7.5
Фрагмент базы данных по функциональным элементам
Класс ФЭ | Вид ТО, в котором могут присутствовать ФЭ | Описание функции ФЭ |
Несущие элементы | Любой многоэлементный ТО, для которого функционально необходимо определенное взаимное положение элементов. | Задает форму ТО и взаимное расположение его элементов в пространстве. |
Двигатели | ТО, выполняющие механическое движение. | Преобразуют исходный вид энергии в механическую. |
Элементы передачи | ТО с рабочим органом, выполняющим движение по определенному циклу. | Передают на расстояние движение или статические силы и моменты с одновременным преобразованием скоростей, моментов, сил и их направлений, включая замену их видов, законов движения. |
Элементы управления | ТО, функционирование которых связано с заданными изменениями каких-либо параметров. | Собирают информацию, вырабатывают управляющее воздействие, передают его исполнительным органам. |
Элементы формирования объемов и потоков | ТО с подвижными или неподвижными объемами жидких, газообразных, сыпучих веществ. | Хранят или транспортируют жидкость, газ, сыпучий материал. |
Наличие базы данных требует поддержания ее, т.е. сохранения на современном уровне, что предохраняет от устаревших решений. Разумеется, база данных используется с помощью ЭВМ.
Закон соответствия между функцией и структурой используется в методах поиска новых эффективных технических решений. Этому способствуют две закономерности, вытекающие из закона.
Закономерность многозначного соответствия между функцией и структурой.
Любая функция может иметь множество структур (конструкций), реализующих эту функцию. И наоборот, одна и та же структура может выполнять более одной функции.
Эта закономерность, по существу, является теоретическим обоснованием метода поиска новых технических решений, который называется морфологическим анализом и синтезом.
Проиллюстрировать закономерность можно следующими примерами. Одну и ту же функцию по перемещению грузов можно выполнять с помощью ручной тележки, транспортера, автомобиля, поезда, самолета.
Один и тот же электродвигатель, движущий электричку на горизонтальном участке пути или на подъеме, выполняет функцию генератора при движении электрички под уклон под действием собственной массы и подпитывает электроэнергией контактную сеть.
Закономерность минимизации компоновочных затрат.
У ТО функциональные элементы, осуществляющие определенные преобразования потоков вещества, энергии или сигналов, располагаются в пространстве по отношению друг к другу таким образом, что компоновочные затраты имеют минимальное значение, т.е.:
,
где qi, j - стоимость каналов передачи вещества, энергии или сигналов между элементами ai и aj, Сh - отдельные составляющие части компоновочных затрат, в частности; С1 - стоимость несущего элемента ТО (каркас, рама, станина); С2 - стоимость элементов защиты ТО (кожух, корпус, футляр); С3 - затраты, зависящие от габаритных размеров ТО (место, занимаемое в цехе, на складе, на транспорте); C4 - затраты на сборку, монтаж, отладку ТО.
Стоимость основных функциональных элементов ТО в сумму компоновочных затрат не входит.
Здесь дана обобщенная формулировка закономерности. Для реального использования в оптимизационных расчетах ее нужно привязать к конкретному классу ТО, что позволит уточнить набор функциональных элементов, их устойчивых свойств и конструктивных признаков.
В целом можно заметить, что чем сложнее объемно-пространственная структура промышленного изделия, тем большее значение для достижения гармонии приобретает последовательное развитие принципа, соответствия между функцией и структурой.
7.5.2. Законы корреляции параметров технических объектов 7.5.2.1 Закон гармоничного соотношения параметров ТОЛюбой ТО имеет вполне определенное техническое решение, которое характеризуется набором основных параметров. Среди параметров, как правило, имеется главный (высота центров токарного станка и т.п.). Главный параметр чаще всего относится к главному функциональному элементу.
Следовательно, техническое решение можно описать набором параметров (х, у1, у2... уп), где х - главный параметр; y1 - параметры, зависящие от х.
Например, производительность, мощность привода, габаритные размеры, масса. Поскольку параметры y1 зависят от х, то существует набор функций:
. (7.4)
Для конкретного ТО набор функций (7.4) можно представить через линейные формы: .
Например, для однорядного радиального шарикоподшипника: x - внутренний параметр; y1 - толщина внутреннего кольца; y2 - ширина подшипника; y3 - внешний диаметр подшипника; у4 - толщина внешнего кольца; y5 - диаметр шариков; y6 - расстояние между шариками; y7 - глубина канавки в кольцах для качения шариков.
Для заданного значения x существуют такие значения yiг, для которых любое другое значение yi приводит к ухудшению ТО. Указанное значение уiг называется гармоничным соотношением параметров.
С математической точки зрения гармоническое соотношение параметров соответствует глобальному экстремуму - глобально оптимальному значению параметров yi по определенному критерию качества или набору критериев (х, y1г, y2г... ynг).
Очевидно, есть какие-то допустимые соотношения параметров, отклоняющиеся от глобально оптимальных, но сохраняющие работоспособность ТО.
Среднее отклонение допустимых параметров от глобально оптимальных
.
Закон может быть сформулирован следующим образом. Любой технический объект, нормально реализующий свою функцию, имеет значения параметров (х, у1... yn) достаточно близкие или совпадающие с гармоничным соотношением параметров (x, y1г... ynг) или yiг = aiг × x (i = 1,2... n).
Раньше, когда технические решения отрабатывались веками, гармонические решения находили эмпирически вследствие многих проб и ошибок. Современное возрастание сложности ТО и сокращение сроков разработки приводит к возрастанию среднего отклонения в рамках допустимого интервала. ЭВМ, системы математического моделирования позволяют приблизиться к = 0.
Закону гармонического соотношения параметров подчиняется, по видимому, любой нормально работающий ТО. Следует только иметь в виду, что соотношения, справедливы только для фиксированных значений главного параметра х. Для другого значения х появится другое значение коэффициента ai [15, 16].
Следует заметить, что закон оптимального соотношения параметров справедлив для всех организованных систем, действуя и в мире живой природы. Иллюстрацией его действия является золотое сечение. Золотым сечением отрезка называется его деление на две неравные части таким образом, чтобы отношение длины всего отрезка к длине его, большей части равнялось отношению большей части к меньшей.
С древних времен этот принцип позволял получать приятные для глаза соотношения в строительстве. Птолемей еще во 2 веке до н.э. обратил внимание, что человеческая фигура и, соответственно, скульптура воспринимаются стройными, приятными для глаза, если отношение длины верхней половины тела (до пояса) к нижней равно 8/13.
Леонардо да Винчи назвал это явление законом золотого сечения. Уже в XX в. французский архитектор Ле Карбюзье заметил, что принцип золотого сечения хорош лишь для плоских изображений. Для объемных фигур требуется оптимальное соотношение трех величин. Примером такого соотношения, которое Ле Карбюзье назвал золотым вурфом, является 113: 70: 43 [21].
7.5.2.2.3акон корреляции параметров однородного ряда ТОК однородному ряду технических объектов относят такие ТО, которые имеют одинаковую функцию, одинаковые условия работы в смысле взаимодействия с обрабатываемым объектом и окружающей средой, одинаковое техническое решение и отличаются только значениями главного параметра.
В стандартизации такой ряд называют параметрическим рядом (подшипников, болтов, насосов и т.д.).
Практика показала, что соотношения параметров ТО однородного ряда с достаточной для практики точностью можно выразить простыми линейными зависимостями y = a × x + b.
Это обнаружил в середине XIX в. немецкий ученый Редтенбахер. Только следует учитывать, что каждый параметр yi, имея свои коэффициенты ai и bi по-разному изменяется при изменении х.
При этом важно обратить внимание на факт, замеченный профессором А.И. Сидоровым в начале XX в.: "Если мы даже для современных деталей, несмотря, на всю сложность и разнообразие влияний, построим такие зависимости, то найдем везде почти точно зависимость весьма простую, именно по закону прямой линии, выражаемую всегда уравнением вида y = a × x + b, причем постоянный член b никогда не бывает нулем, а всегда более нуля... Это обстоятельство весьма важно, т.к оно показывает нам, что все размеры деталей растут не прямо пропорционально главному размеру, начиная с нуля, что было бы при b = 0, а медленнее, стало быть, чем меньше главный размер или, все равно, чем меньше машина, которой принадлежит деталь, тем размеры ее, и что для нас особенно интересно, толщины стенок и т.п. делаются сравнительно больше, нежели в больших машинах и вещах... Этот чрезвычайно важный результат отчасти объясняет нам, почему большие изделия и целые машины выходят по сравнению с малыми того же рода гораздо легче и дешевле". Базирующийся на рассматриваемом законе, способ относительных размеров находит приложение в стандартизации. Окончательная формулировка закона звучит так. Однородный ряд технических объектов S1, S2... Sn, имеющих одинаковые функции и техническое решение, отображаемое набором параметров (x, y1... yn) и отличающихся только значениями главного параметра xj, связан между собой соотношениями y1 = ai × xj + bi (i = 1,2... n; j = 1,2... k).
Закону более полно соответствуют однородные ряды более простых ТО. Сложные ТО (станки, автомобили) меньше подчиняются этому закону, поскольку в них имеют место существенные отличия в технических решениях элементов.
Это - более общий закон, чем закон гармонического соотношения, поскольку у него коэффициенты ai и bi не зависят от главного параметра [16].
7.5.3. Закон гомологических рядовВ живой природе известен закон гомологических рядов Н.И. Вавилова, суть которого заключается в том, что у близких видов, принадлежащих одному роду, имеет место удивительный параллелизм одинаковых признаков. Закон Вавилова формулируется следующим образом: "Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм и у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости".
Закон Вавилова играет в биологии ту же роль, что и закон Менделеева в химии. Поиски новых форм, видов, родов на основе закона гомологических рядов становятся направленными, поскольку можно заранее предсказать строение еще не открытых видов и родов.
Для перенесения закона гомологических рядов в область техники необходимо определить факторы, которые играют роль генотипа, т.е. подобно тому, как генотип в живой природе определяет видовые, родовые и др. признаки, так и в технике необходимо выделить факторы, обусловливающие характерные признаки технических объектов. К таким факторам относятся компоненты описания функции, принципа действия и условий работы ТО, каждая из которых оказывает существенное влияние на структуру (конструкцию) ТО. Тогда закон можно сформулировать следующим образом [15].
ТО с близкими функциями, принципами действия и характеристиками условий работы имеют частично совпадающие наборы варьируемых конструктивных признаков P1,... Рk, принимающих одинаковые значения.
Число совпадающих наборов признаков будет тем больше, чем больше совпадающих компонентов описания функций, принципов действия и условий работы. При этом имеют место корреляционные связи между определенными компонентами и признаками [15].
7.5.4. Законы симметрии технических объектовСимметрия - одно из наиболее ярких свойств композиции, в ней наглядно проявляется принцип организации формы.
Симметричным называется такой предмет, который состоит из геометрически и физически равных частей, должным образом расположенных относительно друг друга.
Под геометрическим равенством элементов подразумевается совместимое равенство или конгруэнтность, либо отраженное равенство или зеркальность. Под физическим равенством - равенство физических свойств.
Примером конгруэнтности является осевая симметрия. Ось симметрии - это линия, при полном обороте вокруг которой фигура несколько раз приходит в совмещение сама с собой. Количество таких совмещений при полном обороте называется порядком оси; угол поворота, при котором фигура совмещается с ней самой, называется элементарным углом поворота. Осевую симметрию принято обозначать порядком оси. Так, трехлопастной гребной судовой винт имеет порядок п = 3. В целом порядок осевой симметрии может меняться в пределах п = 1 ¸ ¥.
Асимметричная фигура обладает бесконечным множеством осей первого порядка, поскольку при повороте на 350° совместится сама с собой. Порядок (¥) имеет сплошной диск, поскольку он совмещается сам с собой при любом угле поворота.
Фигура может иметь не ось, а плоскость симметрии, т.е. воображаемую плоскость, которая делит фигуру на две зеркально равные половины. Этот вид симметрии условно обозначают буквой т. Такая симметрия свойственна живым организмам, многим видам техники, геометрическим фигурам. Иногда ее называют двусторонней симметрией.
Во многих случаях фигура может обладать как плоскостью, так и осью симметрии. Такой симметрией обладают, например, квадрат, правильный шестиугольник и др. Такая симметрия условно обозначается (т × п).
С учетом упомянутых здесь теоретических положений могут быть сформулированы два закона симметрии технических объектов.
7.5.4.1 Закон двусторонней симметрииЛюбой технический объект, который испытывает действие потоков среды (в виде вещества или энергии), находящихся под углом друг к другу, имеет симметрию (т), а плоскость симметрии параллельна направлению векторов действия потоков [15].
Примерами технических объектов, иллюстрирующих этот закон, являются транспортные средства: самолет, судно, автомобиль, ракета и др.
7.5.4.2 Закон осевой симметрияА. Любой ТО, который испытывает существенное однонаправленное действие среды в виде потока вещества или энергии, имеет симметрию (п) или (п × т) с осью симметрии, параллельной действию среды. Пример: гребной винт.
Б. Любой ТО, который испытывает существенное вертикальное действие силы тяжести и плоскопараллельное горизонтальное действие среды (равновероятное или равномерно распределенное со всех сторон), имеет симметрию (п) или (п × т) с вертикальной осью симметрии. Пример: ротор водяной турбины ГЭС.
В. Любой ТО, который испытывает существенное равновероятное или равномерно распределенное со всех сторон (снаружи или изнутри) плоскопараллельное действие среды, имеет симметрию (п) или (п × т) с осью симметрии, перпендикулярной действию среды [15]. Пример: вертикальный автоклав.
7.5.5. Закон статичности и динамичности формыЗакон может быть сформулирован следующим образом:
Равенство или нюанс отношений величин по трем координатам пространства характеризует относительную статичность формы. Контраст в отношениях создает динамику в направлении преобладающей величины. Еще одно условие динамичности - односторонняя направленность формы [22].
Отметим, что под контрастом в композиции понимают значительное различие в размерах, массе, форме, цвете, направлении, материале.
Нюанс - незначительное различие. Классический пример статической формы - квадрат.
Примеры движения (динамики) в сторону преобладающего размера встречаются в изобилии, как в технике, так и в живой природе.
В технике - это различные транспортные средства: автомобиль, теплоход, поезд и т.д. В природе - рыба, любое животное, перемещающееся на четырех конечностях и т.д.
Однако необходимо заметить, что и в природе, и в технике есть очень серьезные исключения из этого закона, заслуживающие специального рассмотрения.
В природе - это, прежде всего, человек, перемещающийся в обычной среде Пребывания не параллельно, а перпендикулярно направлению своей наибольшей оси. В воде он движется в соответствии с законом.
В технике существуют относительно тихоходные транспортные самолеты, у которых размах крыльев больше длины корпуса. Впрочем, указанное противоречие в технике исчезает, если учесть следствие, вытекающее из закона: тело при движении в сплошной среде стремится приобрести ориентацию, обеспечивающую минимальное сопротивление среды.
Классическим примером исключения из закона является шар, который имеет одинаковые размеры по всем осям координат, и, тем не менее, является динамичным телом. Отсюда напрашивается замечание, дополняющее закон, что статичным является тело, ограниченное плоскими, а не криволинейными гранями.
Что касается человека, то специфика его движения исторически сложилась в связи с необходимостью освободить руки для выполнения трудовых операций, в том числе в процессе перемещения в пространстве.
Масштабностью называют соразмерность частей и целого, а также соизмеримость предмета с человеком и предметами окружающей среды.
Закон масштабности - одни из древнейших законов, постигнутых человеком.
"Человек есть мера всех вещей" - эта формулировка выбита на мраморе Дельфийского храма, построенного в Древней Греции два с половиной тысячелетия назад;
В природе масштабность проявляется в том, что с увеличением абсолютных размеров развивающегося организма, размеры его отдельных частей относительно целого изменяются. Так, размер головы маленького ребенка составляет одну четвертую часть длины тела, а у взрослого человека - лишь одну восьмую. Аналогичное явление наблюдается и в технике применительно к техническим объектам разного размера.
Так, маленький и большой станки имеют одинаковые по размерам кнопки и рычаги управления, поскольку последние должны оставаться соразмерными человеку. Это настолько привычно для нас, что маленький станок, у которого все элементы будут уменьшены пропорционально уменьшению габаритов станка по сравнению с большим, будет восприниматься как уменьшенный макет большого станка, а не как самостоятельный ТО.
Другим примером могут служить дверцы и фары больших и маленьких автомашин и т.д.
Изложенные выше законы далеко не исчерпывают общие принципы создания техники. Работа по осмыслению закономерного характера развития технических систем находится в начале своего пути. И здесь есть обширное поле деятельности для тех, кого привлекает изучение окружающей нас техносферы.
55. Шухардин С.В. Основы истории техники. Опыт разработки теоретических и методологических проблем. - М.: АН СССР, 1961. - 278с.
56. Друянов Л.А. Законы природы и их познание. - М.: Просвещение, 1982. - 112с.
57. Ковалев А.М. Общество и законы его развития. - М.: Изд. МГУ, 1975. - 416с.
58. Капитонов Е.Н. Отражение противоречий научно-технического прогресса при подготовке конструкторов химической техники. В сб. "Формирование научного мировоззрения в учебном процессе". - Тамбов: ТГПИ, 1986. - С.95-103.
59. Мелещенко Ю.С. Техника и закономерности ее развития. - Л.: Лениздат, 1970. - 246с.
60. Белозерцев В.И., Сазонов Я.В. Философские проблемы развития технических наук. - Саратов: изд. Саратовского гос. ун-та, 1983. - 143с.
61. Белозерцев В.И. Проблемы технического творчества как вида духовного производства. - Ульяновск: Приволжское кн. изд., 1970.
62. Панибратов В.Н. Категория "закон". Проблемы истории и объективно-диалектического содержания. - Л.: Наука, 1980. - 128с.
63. Кессиди Ф. X. От мифа к логосу. (Становление греческой философии). - М.: Мысль, 1972. - 312с.
64. Кузин А.А.К. Маркс и проблемы техники. - М.: Наука, 1968. - 112с.
65. Семенов С.А. Развитие техники в каменном веке. - Л.: Наука, 1968. - 361с.
66. Альтшуллер Т.С. Творчество как точная наука. - М.: Советское радио, 1979. - 184с.
67. Дитрих Я. Проектирование и конструирование. Системный подход. - М.: Мир, 1981. - 454с.
68. Каменев А.Ф. Технические системы: закономерности развития. - Л.: Машиностроение, 1985. - 216с.
69. Половинкин А.И. Основы инженерного творчества. - М.: Машиностроение, 1988. - 368с.
70. Половинкин А.И. Законы строения и развития техники (постановка проблемы и гипотезы). - Волгоград: изд. Волгоградского политехнического института, 1985. - 202с.
71. Хауштейн Г.Д. Методы прогнозирования в социалистической экономике. - М: Прогресс, 1971. - 398с.
72. Гмошинский В.Г. Инженерное прогнозирование. - М: Энергоиздат, 1982. - 207с.
73. Зыков А.А. Основы теории графов. - М.: Наука, 1987. - 380с.
74. Шугуров Л.М., Ширшов В.П. Автомобили страны Советов. - М.: ДОСААФ, 1983. - 128с.
75. Сонин А.С. Постижение совершенства: симметрия, асимметрия, диссимметрия, антисимметрия. - М.: Знание, 1987. - 203с.
76. Сомов Ю.С. Композиция в технике. - М.: Машиностроение, 1987. - 288с.
77. Пригожин И.Р. От существующего к возникающему: время и сложность в физических науках. - М.: Наука, 1985. - 327с.
78. Хаин В.Е. Размышления естествоиспытателя, ж. "Природа", 1994, № 1, С.60-63.
79. Никалис Г., Пригожин И. Самоорганизация в неравновесных системах: от диссипативных структур к упорядоченности через флуктуации. - М.: Мир, 1979. - 512с.
Исходным материалом (заданием) для выполнения проектно-конструкторских работ могут служить:
техническое задание планирующей организации;
техническое предложение инициативной группы;
научно-исследовательская работа или созданный на ее основе опытный образец;
изобретение;
зарубежный образец.
Дальнейший процесс работы над проектом зависит от выбранной разработчиком стратегии проектирования.
Под стратегией здесь понимается последовательность действий, выполняемых проектировщиком с целью преобразования исходного технического задания в готовый проект.
В идеале заданная стратегия должна быть линейной, т.е. состоять из цепочки последовательных действий, в которой каждое действие зависит от исхода предыдущего, но не зависит от результата последующих действий.
Если после получения результатов на одной из стадий приходится возвращаться к одному из предыдущих этапов, стратегия становится циклической.
Когда действия проектировщика по отдельным этапам не зависят одно от другого, может иметь место разветвленная стратегия с параллельными этапами, позволяющими увеличить количество людей, одновременно работающих над задачей. В этом случае полезно планировать работу в виде сетевого графика.
Пример последовательности работы в соответствие с линейной стратегией приведен на блок-схеме процесса проектирования.
Рассмотрим несколько подробнее перечисленные этапы. Итак, первый этап - уяснение цели.
Цель может определяться заданием или вытекать из характера работы (например, разработка патентуемого изделия). В любом случае первым этапом проектирования процесса является четкое определение цели, которая должна быть достигнута, или требование, которое должно быть удовлетворено.
Уясняя цель, конструктор должен, прежде всего, внимательно изучить исходные материалы. При их изучении важно правильно выбрать параметры проектируемой машины.
Для этого, в частности, конструктор должен знать патентную литературу и быть в курсе всех поисковых и перспективных работ, проводимых в научно-исследовательских институтах данной отрасли машиностроения.
Это - один из самых трудных этапов проектного исследования. Для его выполнения создан комплекс специальных методов, который одновременно позволяет выполнить и второй этап проектирования - выбор пути решения задачи.
Характеризуя все эти методы в целом, следует заметить, что их объектом является не столько проектирование, сколько мыслительная деятельность, предшествующая выполнению чертежей и проектов.
Поэтому основа новых методов в значительной мере покоится на достижениях психологии. Это - стык психологии и технических наук.
Знакомясь с этими методами, необходимо учитывать, что ни один из них не существует сегодня в полностью завершенном виде, и при решении любой задачи проектирования необходимо определенное сочетание логики и интуиции.
Интуиция базируется на соответствующем опыте работы. Как правило, поиск интуитивного решения требует времени на осознание и преобразование в уме образов, изображающих структуру задачи в целом. В течение длительных и внешне бесплодных поисков решения проектировщик может неожиданно найти новый способ структурирования задачи, позволяющей разрешить конфликты. Это событие, которое иногда называют творческим, дает возможность преобразовать сложную задачу в простую (Рассмотреть пример с А.Н. Туполевым - о крышке люка, которую должно вырвать в полете).
Выполнение этапа уяснения цели и постановки задачи зависит от того, есть ли прототип проектируемого изделия, либо требуется разработка принципиально новых технологических решений, не имеющих прототипов. Может быть поставлена задача поиска новых технических решений как задач математического программирования (автоматизированный поиск оптимальных технических решений).
Мы ограничимся здесь рассмотрением наиболее простой задачи, когда имеется прототип конструкции. В этом случае постановка задачи осуществляется последовательно посредством выполнения следующих операций.
Операция 1. Описание проблемной ситуации. Это ответ на такие вопросы:
а) В чем состоит проблемная ситуация и какова ее предыстория?
б) Что требуется сделать для устранения проблемной ситуации, т.е. какую потребность нужно удовлетворить?
в) Что мешает достижению цели?
г) Что дает решение задачи людям, народному хозяйству?
Операция 2. Описание функции (назначения) ТО. Мы это делаем, рассматривая построение функциональной структуры.
Операция 3. Выбор прототипа и составление списка требований. В качестве прототипа выбирают лучшие мировые образцы в ведущем классе ТО. Для этого используют патентные обзоры за последние 5-10 лет, каталоги выставок и т.д. По прототипу определяют список требований (с учетом эволюции критериев развития).
Иногда при выборе прототипа удается найти подходящее готовое решение. Однако при наличии времени почти всегда есть возможность улучшить найденное решение.
Операция 4. Составление списка недостатков прототипа. Под списком недостатков прототипа имеют в виду перечень требующих улучшения критериев, показателей с их количественной оценкой (увеличение производительности, скорости, мощности).
При составлении этого списка полезно изучить конструктивную эволюцию рассматриваемых ТО, использовать обратную мозговую атаку (о которой речь пойдет дальше).
Полученный список недостатков упорядочивается по степени важности их устранения.
Операция 5. Предварительная формулировка задачи. Обобщаются результаты предыдущих операций с разделением результатов на "дано" и "требуется".
Дано: а) качественное и количественное (когда возможно) описание функции и ограничений на ее реализацию;
б) перечень и описание возможных прототипов, и списки требований к ним;
в) списки недостатков прототипов.
Требуется: найти техническое решение, так меняющее прототип, чтобы реализовалась интересующая функция и уменьшились или ликвидировались недостатки, присущие прототипу.
Далее идут операции по уточнению постановки задачи.
Операция 6. Анализ функций прототипа и построение улучшенной конструктивной функциональной структуры.
Для этого после построения конструктивной функциональной структуры прототипа ищут ответ на вопросы:
а) Какие можно ввести новые функциональные элементы для устранения недостатков прототипа?
б) Какие элементы можно исключить с передачей их функций другим элементам (или вообще)?
в) Для каких элементов, имеющих несколько функций, целесообразно разделение функций с введением дополнительных элементов?
На основании ответов на эти вопросы строят улучшенную структуру.
Операция 7. Анализ функций вышестоящей по иерархии системы.
Почти всегда данную систему можно представить как элемент другой, более сложной технической системы.
При анализе:
Выделяют эту вышестоящую по иерархии систему.
Описывают функции всех элементов, входящих в эту систему, и строят ее конструктивную функциональную структуру.
Выясняют, можно ли выполнить функцию рассматриваемого ТО путем внесения изменений в смежные объекты; нельзя ли какому-либо смежному объекту частично или полностью передать выполнение функций рассматриваемого ТО; что мешает внесению необходимых изменений и нельзя устранить мешающие факторы.
По аналогии с операцией 5 сформулировать задачу внесения изменений в смежные объекты. Провести сравнение эффективности первоначальной задачи и изменения смежных объектов. Если последнее эффективней, проработать этот вариант по операциям 1 - 6.
Операция 8. Выявление причин возникновения недостатков (выявленных в операции 4). Цель - попытаться ответить на вопрос: можно ли полностью или частично избавиться от недостатка, исключив причину его возникновения?
Операция 9. Выявление и анализ противоречий развития. Суть противоречий развития обычно заключается в том, что попытка улучшить какой-то показатель машины приводит к ухудшению другого показателя.
При выполнении данной операции выполняют следующие процедуры.
Из списка недостатков прототипа (см операцию 4) выбирают недостатки, связанные с количественными показателями, относящимися, в первую очередь, к критериям развития ТО.
При рассмотрении этих показателей ищут ответ на вопросы:
какой показатель ТО существенно ухудшается при улучшении рассматриваемого показателя;
какие факторы (константы, стандарты) ограничивают улучшение желаемого показателя.
Строят график зависимости ухудшаемого показателя от улучшаемого.
Операция 10. Уточнение списка прототипов и формирование идеального технического решения.
Проведенный выше анализ расширяет представление о задаче и требованиях к прототипу. Поэтому иногда приходится возвращаться к выбору прототипа.
Кроме того, полезно сформулировать идеальное техническое решение (идеальная машина), учитывающее главную магистраль развития (эволюции) ТЭ.
Идеальное техническое решение полностью или частично обладает следующими свойствами:
Размеры ТО приближаются или совпадают с размерами обрабатываемого или транспортируемого объекта, а масса ТО намного меньше массы обрабатываемого объекта.
В ИТР масса и размеры ТО или его главных функциональных элементов приближаются к нулю или равны нулю (когда устройства вообще нет, а необходимая функция выполняется).
В ИТР время обработки объекта приближается к нулю или равно нулю.
КПД приближается к единице, а расход энергии - к нулю.
Все части ТО все время выполняют полезную работу в полную меру своих расчетных возможностей.
ТО функционирует бесконечно долго без ремонта и остановок.
ТО функционирует без человека или при его минимальном участии.
ТО не оказывает отрицательного влияния на человека и окружающую среду.
Конечно, достаточное приближение к ИТР требует большой доли фантазии, но, тем не менее, это сужает направление поиска реальных решений.
Операция 11. Улучшение других показателей ТО. При разработке новой модели или нового поколения ТО стремятся не только устранить главные видимые недостатки, выявленные в операции 4, но и усовершенствовать весь комплекс существенных показателей. Поэтому по отношению к выбранным прототипам стараются найти ответ на вопросы: Какие еще можно устранить недостатки в прототипе? Какие показатели могут быть дополнительно улучшены и на сколько?
Операция 12. Уточненная постановка задачи. Формулирование задачи уточняется за счет включения в исходные данные следующих выявленных в процессе анализа вопросов:
качественное и количественное описание функции ТО;
перечень и краткое описание прототипов, к которым могут быть отнесены улучшенные функциональные структуры и ИТР, и списки основных требований к прототипам;
списки главных недостатков прототипов с указанием причин возникновения недостатков;
списки дополнительных недостатков и показателей, которые желательно улучшить;
формулировка противоречий развития прототипов.
Отличие описанного метода уяснения задачи от традиционного можно показать на примере.
Сформулировать задачи создания нового способа производства серной кислоты, который не будет вредно влиять на окружающую среду.
Характеристика ситуации функционирования объекта.
а) Период функционирования объекта - несколько десятилетий.
б) Характер загрязнений при традиционном способе производства - огарок (не используется), SO2, SO3.
в) Причины загрязнений.
Огарок содержит серу. Поэтому использовать его в доменном процессе нецелесообразно.
SO2 содержится в отходящих газах из-за неполного контактирования SO2 в SO3.
SO2 и SO3 выбрасываются в атмосферу из-за неполной их абсорбции и становятся причиной кислотных дождей.
Характерные условия, которым должен отвечать объект.
а) Требования к объекту.
Ликвидация загрязнения почвы огарком.
Снижение вредных газовых выбросов в 10 раз, т.е. должно улавливаться 99,99% всех вредных выбросов.
б) Сроки выполнения работы и допустимая стоимость, т.е. наличные ресурсы.
в) Главные цели (невыполнение которых может значительно ухудшить проект).
Это самая ответственная часть работы, в которой используется вся наличная информация.
Вначале намечаются возможные варианты, определяющие "пространство маневрирования" проектировщика.
Такими вариантами могут быть:
использование чистой серы, вместо серного колчедана;
использование огарка для получения окатышей;
проведение контактирования при высоком давлении;
проведение двойного контактирования;
проведение двойной абсорбции.
Обеспечение совместимости условий, характеризующих главные задачи друг с другом и с имеющейся информацией.
Не рассматривая все подробно, отметим, что несовместимым с наличной информацией является контактирование под высоким давлением в связи с отсутствием в СССР производства мощных компрессоров для агрессивных газов типа SO2 и SO3. Таким образом, выявились конкретные задачи, требующие дальнейшей разработки.
Формулирование задачи облегчается применением ряда методов.
Поиск литературы
Цель: отыскать опубликованную информацию, полезную для будущих проектных решений.
План действия:
Определим цели, для которых разыскивается информация.
Определить виды изданий, в которых может публиковаться достоверная информация, пригодная для указанных целей.
Выбрать наиболее подходящие общепринятые методы поиска литературы.
Свести стоимость поиска литературы к минимальной, предусмотрев время на задержки в выдаче информации и непрерывно оценивая как выбор источников информации, так и пригодность собранных данных.
Поддерживать точную и полную картотеку признанных полезными документов.
Составить и постоянно обновлять небольшую библиотеку для быстрого отыскания нужной информации
При определении целей могут встречаться разные ситуации.
Например: целью может быть изучение состояния вопроса в области знания, уже изученной другими специалистами, а может понадобиться выбрать примеры из широкой области, в которой информация до сих пор отрывочна и не систематизирована. Это влияет на следующий этап.
Определить виды изданий.
В первой из указанных выше ситуаций полезно сосредоточить внимание на обзорных статьях, монографиях и учебниках, избегая оригинальных журнальных публикаций и популярных статей.
Во второй ситуации необходимо искать теоретические, технические и популярные публикации любого типа по проблеме, более широкой, чем выполняемая задача.
При этом необходимо учитывать наличие информационного шума (проиллюстрировать это понятие, например, уравнением Кутателадзе для расчета длины хода испарителя с экономайзерной зоной).
Выбрать наиболее подходящие методы поиска литературы.
Существуют следующие стандартные способы выявления необходимых публикаций.
а) Обращение к энциклопедическим словарям;
б) Использование библиотечных каталогов;
в) Консультации с библиографом или сотрудниками информационных служб;
г) Консультации с экспертами;
д) Обращение к реферативным журналам;
е) Использование механизированных или автоматизированных ключевых указателей;
ж) Консультации у исследователя, который по характеру своей работы мог уже собрать разыскиваемые публикации;
з) Просмотр периодической литературы. При этом следует учесть важность правильного доведения цели поиска до библиографа;
и) Использование Интернета.
Важно отметить, что современные механизированные системы поиска могут обеспечить полноту поиска до 90% и точность до 50%. Ручной поиск дает значительно более низкие результаты.
Свести стоимость поиска литературы к минимуму. Очень легко утратить контроль за поиском литературы ("утонуть в ней"). Поэтому рекомендуется придерживаться следующих рекомендаций:
а) наметить дату, к которой поиск литературы должен быть завершен;
б) предусмотреть возможные задержки в выдаче документов из отдаленных источников информации;
в) свести до минимума количество источников, отобрав на первом этапе только наиболее перспективные;
г) на основании мнения экспертов сократить длинные перечни документов, получаемые от библиографов;
д) при отсутствии какого-либо иного метода отбора следует руководствоваться репутацией автора и издания, а также качеством изложения вопроса в данном документе (привести пример с изложением теории подобия А.А. Гухманом и М.В. Кирпичевым);
е) в самом начале поиска ознакомиться с некоторыми материалами из каждого источника и сделать вывод об их пригодности для решения данной проблемы (часто название обещает больше, чем дает содержание);
ж) следует помнить, что, хорошо усвоив характер проблемы, можно за несколько минут извлечь релевантную информацию из обширного документа. Поэтому поиску литературы должно предшествовать тщательное обдумывание проектной ситуации.
Последующие этапы работы могут быть понятны без дополнительных комментариев.
Следующий этап: выявление визуальных несоответствий.
Цель: определить направления, по которым должен идти поиск совершенствования художественно-конструкторского решения.
Метод применим, когда основные принципы конструкции уже выявились, или когда идет речь о модернизации существующих изделий.
План действий:
изучить образцы или фотографии существующих изделий;
определить очевидные несоответствия и противоречия в компоновке и назначении деталей конструкции;
определить причины этих несоответствий и доказать целесообразность изменения художественно-конструкторского решения;
предусмотреть пути ликвидации несоответствий и способы приведения конструкции в соответствие с условиями эксплуатации.
Поскольку применение этого метода в основном, касается дизайнеров и требует близости к изобретательному искусству, более подробно рассматривать этот метод не будем. При необходимости его описание можно найти в книге Д.К. Джонса "Инженерное и художественное конструирование. Современные методы проектного анализа". - М.: Мир, 1976.
Интервьюирование потребителей.
Цель: собрать информацию, известную только потребителям данного изделия, например, применительно к химическому оборудованию, аппаратчикам.
План действий:
Выявить ситуации потребления (использования) изделия.
Побуждать потребителей к описанию и демонстрации любых аспектов их деятельности, которые они считают важными.
Направить беседу на обсуждение тех аспектов деятельности, потребителя, которые имеют непосредственное отношение к исследуемой ситуации.
Зафиксировать во время интервью или сразу после него как основные, так и побочные выводы.
Получить замечания потребителей (если это целесообразно) относительно выводов, сделанных на основании интервью.
При организации интервью полезно использовать опыт, накопленный в нашей стране в процессе социологических исследований.
Перед интервью полезно составить вопросники, чтобы интервьюирующий помнил об основных спорных аспектах проекта, но не целесообразно проводить опрос так, чтобы потребитель понял, что лишь немногие аспекты его работы представляют интерес.
Цель интервью - заставить потребителей спонтанно высказываться о тех аспектах их работы, которыми они наиболее озабочены. К ним могут относиться и такие аспекты, о которых сам интервьюирующий не подозревает, хотя они имеют самое непосредственное отношение к формулированию проектных задач (Пример с дешевой мебелью на крейсерах 1905 г).
Часто конструкторам требуется информация о таких аспектах рабочего процесса, над которыми потребители не имеют оснований серьезно задумываться, т.к им удалось приспособиться к оборудованию. Если интервьюирующий обнаруживает, что над некоторыми интересующими его аспектами потребитель специально не задумывался, необходимо в беседе вновь сосредоточить внимание на том, что потребитель считает важным. Ведь очень легко потерять доверие потребителя, если настойчиво продолжать разговор о том, что тот считает тривиальным или не имеющим отношения к делу.
Анкетный опрос.
Анкетный опрос проводится с целью собрать полезную информацию среди многочисленной группы потребителей, которую затруднительно охватить устным опросом. Это полезно, например, при совершенствовании товаров народного потребления.
План действия:
Определить проектные решения, на которые могут повлиять ответы на вопросы анкеты.
Охарактеризовать виды информации, имеющие важное значение для принятия проектных решений.
Определить категории лиц, располагающих необходимыми видами информации.
Провести предварительные исследования, чтобы получить представление о знаниях потенциальных участников анкетного опроса (например, интервьюированием потребителей).
Составить пробную анкету, отвечающую как процедуре опроса, так и конкретной проектной ситуации.
Распространить пробную анкету для проверки вопросов, вариативности ответов и метода их анализа.
Отобрать наиболее подходящий контингент лиц, располагающих необходимой информацией.
Собрать ответы на анкету лично или по почте.
Извлечь из ответов данные, наиболее полезные для проектировщиков.
При использовании этого метода необходимо учесть следующие замечания.
На мнение потребителей нельзя полагаться, пока у них нет опыта обращения с новым изделием, т.е. не нужно задавать вопросов о предполагаемых новшествах.
Предварительные интервью полезны в том, что они дают возможность исключить из опроса те категории лиц, опыт которых, как показали интервью, не имеет особой ценности. К тому же проектировщик не должен приступать к работе по проектированию до тех пор, пока не осознает, насколько далеко от реальности его представление о действительных мыслях потребителей.
При составлении анкет следует придерживаться следующих принципов:
а) спрашивать лишь минимум информации, необходимый для данного случая;
б) вопросы должны формулироваться так, чтобы на них можно было ответить однозначно - "да" или "нет", или просто цифру, или ответить как-то иначе, но столь же определенно и точно;
в) вопросы должны формулироваться так, чтобы ответы были искренними и неуклончивыми (т.е. не задевать самолюбия опрашиваемого);
г) в вопросах не должно быть неуместного любопытства;
д) количество вопросов должно быть таким, чтобы заполнение анкеты не отнимало слишком много времени. Так, если предполагается, что опрашиваемый должен заполнять анкету непосредственно на своем рабочем месте, "между делом", то заполнение ее не должно отнимать более 10-15 минут, иначе анкета будет отодвинута в сторону на неопределенное время.
Пробные анкеты позволяют оценить трудоемкость их заполнения и уточнить круг интервьюируемых. На стадии пробного анкетирования отбрасывается и методика извлечения полезных данных из анкет (В качестве примера - анкетирование студентов во "Введении в специальность").
Исследование поведения потребителей
Цель: Исследовать модели поведения потенциальных потребителей нового изделия и предсказать их предельные характеристики.
Это, по существу, эргономическое исследование или "исследование человеческих факторов". Многие из этих факторов не могут быть выявлены в результате интервью или анкетирования, вследствие автоматизма их выполнения.
Например, обычный ключ от замка все расценивают только как средство отпирания двери. Наблюдения же показывают, что, повернув ключ, люди используют его же, чтобы толкнуть дверь или потянуть ее на себя. А ведь форма ручки ключа для этого неудобна (Показать, как мы обычно учитываем эргономику).
План действий:
Прежде чем приступить к разработке новой конструкции, проконсультироваться с опытными и неопытными потребителями аналогичного оборудования и провести соответствующие наблюдения (Здесь используется интервьюирование).
Проанализировать систему "человек - машина" для определения задач, возможностей потребителя и художественно-конструкторских требований к тем деталям конструкций, которые находятся в непосредственном взаимодействии с потребителем.
Изучить путем наблюдения или моделирования особенно важные аспекты поведения как малоискушенных, так и опытных потребителей изделия.
Зафиксировать предельные значения, повышение которых приведет к невозможности выполнения потребителем необходимых операций без возникновения ошибок, поломок и неудобств.
Для выполнения второго этапа используются специальные методы "Системотехника" и "Проектирование систем "человек - машина", которые мы рассмотрим несколько позднее.
На третьем этапе сомнения относительно приемлемости нового оборудования для потребителя можно попытаться разрешить одним из трех способов: с помощью контролируемых экспериментов, использованием абстрактных моделей поведения человека и путем "системных" экспериментов.
Принцип контролируемых экспериментов состоит в том, что в лабораторных условиях создается ситуация, при которой может изменяться одна переменная (например, скорость работы) и измеряется ее влияние на другую переменную (например, на количество совершенных ошибок), в то время как все другие переменные остаются жестко зафиксированными. При этом традиционные методы научного эксперимента следует дополнять специальными статистическими методами, чтобы учесть широкую вариабельность деятельности человека.
Здесь нужна осторожность, поведение в лабораторных условиях может отличаться от поведения того же человека в производственных условиях, где действует много побочных факторов.
Например, измерения влияния размера шкалы прибора на точность считывания в лаборатории показали, что размеры традиционных шкал больше, чем в 2 раза превышают необходимые размеры. Можно было бы уменьшить размеры пультов и приборных панелей. Однако до сих пор во всем мире имеются сомнения в возможности перенести этот лабораторный результат в производственные условия.
В некоторых случаях вместо человека удается использовать его модель. Например, использование модели в испытаниях автомобилей в аварийных ситуациях.
Третий способ - системные эксперименты - ставит задачей не поиск общих и не контролирование индивидуальных переменных, а последовательное введение в реальную систему "человек - машина" или исключение из нее грубых ограничений. Результаты будут отражать ответы системы на эти ограничения, что поможет внести ясность в основные вопросы, связанные с данной системой (т.е. системный эксперимент в данном случае - эксперимент с системой).
Поскольку требуется только основная и притом довольно приближенная информация, компоненты машин в моделируемой системе могут быть весьма условными и стоить значительно дешевле, чем детально отработанный образец. Системные испытания представляют собой метод, имеющий самостоятельное значение, и мы рассмотрим его следующим.
Поскольку "Исследование поведения потребителей" является эргономическим методом, здесь уместно охарактеризовать принципы эргономики как "проектной" дисциплины:
а) Устойчивые навыки приобретаются в результате того, что человек привыкает выполнять все операции, кроме главных, неосознанно, автоматически; поэтому мнения проектировщиков и потребителей, касающиеся их выполнения, могут быть ошибочными. Следовательно, очень полезно проводить наблюдения над действиями потребителей.
б) Наблюдение за ошибками начинающих операторов и измерение времени обучения являются источниками ценной информации и служат чувствительным критерием оценки соответствия конструкции требованиям потребителя.
в) Контролируемые эксперименты начинают давать общезначимые результаты, но нужен специалист для их интерпретации. Лишь немногие результаты таких экспериментов удалось превратить в достаточно простые модели.
г) Системные эксперименты часто бывают необходимы для решения главных проектных вопросов относительно конкретной системы "человек - машина" с достаточной степенью достоверности.
Необходимо понимать, что без тщательных измерений почти невозможно определить пределы способностей человека выполнять те или иные действия, а без наблюдения за его деятельностью, которое должно предшествовать проектированию, нельзя правильно учесть все аспекты, связанные с человеческими факторами. Ведь приспособляемость человека к неблагоприятным условиям настолько велика, что стоимость этой адаптации не учитывается людьми, принимающими проектные решения. Но нет сомнений в том, что огромная стоимость несчастных случаев; выработки навыков, которые быстро устаревают; стрессов современной жизни - может быть значительно уменьшена путем систематических исследований требований потребителей и внесения в конструкцию необходимых изменений.
Системные испытания.
Цель: Определить действия, способные привести к желательным изменениям сложной проектной ситуации.
Системные испытания имеют преимущество перед использованием отдельных моделей или частных вычислений в тех случаях, когда имеются сомнения относительно правильности установления причин и следствий в реальной ситуации и характера их взаимодействия. Они полезны также в случаях, когда имеющие модели не могут учесть все важные взаимосвязи причин и следствий, которые характерны для данной ситуации, т.е. для выяснения вопросов, не поддающихся моделированию. Но результаты системных испытаний применимы только к данной ситуации.
План действий:
Определить характеристики данной проектной ситуации, не соответствующие желаемому.
Определить источники резких изменений поведения в рамках данной ситуации.
Ввести существенные ограничения в источники вариабельности или снять их, зарегистрировав результаты их влияния на характеристики ситуации, не отвечающие желаемому. Зарегистрировать такие их явления на другие характеристики данной проектной ситуации.
Выбрать наиболее перспективные и наименее опасные из изученных ограничений и использовать их для планирования и достижения желаемых изменений.
Чтобы названный план действий был понятен, рассмотрим простейший пример.
Предположим, нам требуется найти наиболее близкие к оптимальным размеры аудиторной доски. Такая задача может иметь практическое значение при организации массового производства, когда лишний десяток сантиметров высоты доски приводит к большому перерасходу материала.
Интересующими нас характеристиками являются высоты верхнего и нижнего края доски, оптимальное расположение которых зависит от роста лекторов, их почерка, характера графического материла и даже от того, тесен или свободен костюм на лекторе. Ясно, что построить аналитическую модель, учитывая все эти элементы невозможно.
В данном случае ограничения снимают тем, что изготовляется экспериментальная доска от пола до высоты 255-260 см и шириной во всю стену. Затем приглашаются по очереди разные лекторы разных специальностей, которые излагают конкретные материалы с использованием этой доски. Использованное поле доски тщательно измеряется, фотографируется, после чего проводится статистическая обработка собранных результатов. Отсекается по 5% крайних значений.
Основным недостатком системных испытаний является то, что они могут касаться только существенных последствий и не чувствительны к незначительным эффектам.
Накопление и свертывание данных.
Цель: Построить и представить в визуальной форме модели поведения человека, от которых зависят критические проектные решения.
Накопление и свертывание данных, недоступных непосредственному восприятию, применяются в тех случаях, когда местонахождение, физический объем и временной масштаб ситуации проектирования далеки от того, что проектировщики способны охватить, опираясь на свою память или непосредственное чувственное восприятие; примерами могут служить отдаленные потребители, крупные транспортные системы, распространение малых трещин, быстрые действия квалифицированных операторов и т.д.
Накопление данных может осуществляться с помощью специальных видов киносъемки, магнитных записей и пр.
Сбор и анализ данных в этом случае осложняется тем, что на каждую единицу собранной полезной информации приходится множество абсолютно бесполезных сведений. Выбор полезной информации и представляет собою "свертывание" данных.
Таким образом, план действий представляется следующим:
Выявить неопределенности, имеющие критическое значение для успеха или неудачи проектных решений в рассматриваемом диапазоне (Примеры: состояние и действие пилота в момент преодоления звукового барьера, обтекание водой подводного крыла при движении судна на подводных крыльях).
Определить, до какой степени следует сократить неопределенности, имеющие критическое значение.
Определить время и имеющиеся возможности для сокращения неопределенностей, имеющих критическое значение.
Просмотреть существующие методы накопления и свертывания данных, отмечая в каждом случае точность, скорость и стоимость обработки данных, а также типы вопросов, на которые может быть дан ответ.
Выбрать методы накопления и свертывания данных, совместимые с изложенными требованиями и друг с другом.
Непрерывно проверять релевантность промежуточных результатов и неопределенностей, имеющих критическое значение, и при необходимости корректировать методику.
Перечисленные приемы позволяют выполнить и второй этап приведенной блок-схемы процесса проектирования. Для выполнения этапа "Формирование идеи" используют морфологический анализ и синтез, метод обобщенной цели, метод поэтапного улучшения объекта АРИЗ и другие методы, ряд которых рассмотрен в теме: "Системный подход в технике".
После того, как сформированы конкретные идеи, наступает этап инженерного анализа. Этот этап включает следующие операции:
описание более конкретной технической задачи;
разработка плана;
построение модели аналитической или экспериментальной;
применение физических принципов (т.е. по существу, создание системы расчета ТО);
вычисления;
проверка;
оценка;
оптимизация.
После проведения инженерного анализа выполняется этап конкретизации решения, т.е. разработка проекта эскизного, технического, рабочего.
Рабочий этап, включающий чертежи всех элементов конструкций со всеми размерами, техническими требованиями и технология изготовления ТО идут в производство.
Завершением разработки проекта не заканчивается работа конструктора. В течение всего производственного процесса он курирует работу, решая в необходимых случаях вопросы замены конструкционного материала, возможности использования деталей, в которых допущены отклонения размеров от указанных в чертеже, внося изменения в проект в соответствии с принятыми рационализаторскими предложениями и т.д.
Курирование проекта со стороны разработчиков продолжается и на этапе сбыта и эксплуатации ТО. Ведь только на этом этапе можно выявить быстро изнашивающиеся детали, оценить срок их службы и т.д.
Успеха на мировом рынке можно добиться, лишь обеспечив выполнение следующих задач:
ускорение темпов обновления выпускаемой продукции, что в частности, в машиностроении, требует значительного сокращения сроков выполнения проектно-конструкторских работ;
повышение технического уровня продукции за счет использования оптимальных технических решений;
максимальное использование новейшей научно-технической информации и технологии ее изготовления.
Все указанные задачи можно успешно решать, лишь используя ЭВМ, и, в частности, в проектных работах, применяя САПР.
Под автоматизацией проектирования понимают такой способ проектирования, при котором все проектные операции и процедуры или их часть осуществляется посредством взаимодействия человека и ЭВМ.
Использование ЭВМ, по данным А.В. Алферова [1], при проектировании станочных приспособлений повышает производительность труда конструкторов в 5-10 раз. Это же подтверждают данные Рурского университета (ФРГ), согласно которым машинное выполнение рабочего чертежа детали производится в 10 раз быстрее, чем в ручную, а стоимость работы уменьшается в 2 раза [2].
Оптимизация конструктивных решений в ряде случаев вообще невозможна без применения ЭВМ. В этом нетрудно убедиться, рассмотрев нижеследующие простейшие примеры.
Заметим предварительно, что любая проектно-конструкторская задача имеет, как правило, множество решений, одно из которых может оказаться более экономичным или эффективным по сравнению со всеми остальными решениями. Этот вариант и является оптимальным.
Пример 1. Требуется спроектировать цилиндрический сварной сосуд с плоскими днищами, имеющий объем V, и работающий под атмосферным давлением. Варьируя в широких пределах значениями диаметра сосуда D при граничном условии V = const можно получить целый ряд значений высоты или длины сосуда из соотношения
(рис.9.1).
Однако расход материала на изготовление сосуда будет различным.
Приняв в качестве критерия оптимизации материалоемкость сосуда и применив метод дифференцирования для поиска экстремума функции одной переменной, можно получить:
, (9.1)
где Dопт - оптимальный диаметр сосуда; S1 и S2 - толщины соответственно корпуса сосуда и его днищ.
Решение рассмотренной задачи не требует применения ЭВМ.
Пример 2. Определить основные размеры сварного цилиндрического сосуда с плоскими днищем и крышкой, работающего под атмосферным давлением. Крышка устанавливается на сосуде с помощью фланцевого соединения (рис.9.2).
Рис.9.1 Сварной цилиндрический Рис.9.2 Цилиндрический сварной емкостной аппарат емкостной аппарат с отъемной крышкой.
Наличие фланцев на корпусе аппарата существенно уменьшает величину его оптимального диаметра, поскольку фланец имеет более значительную толщину, чем стенки и в нем сконцентрирована основная часть массы сосуда.
Значительно усложняется расчет оптимальных размеров сосуда в силу следующих обстоятельств
Фланцы стандартизованы (ОСТ 26-01-54-77) по дискретному ряду внутренних диаметров, следовательно, изменение металлоемкости и диаметра сосуда не является непрерывной функцией и оптимум ее нельзя искать дифференцированием. Это можно сделать методом итерации, то есть многократным повторением расчета для разных диаметров сосуда, предусмотренных стандартом. А это уже задача для ЭВМ.
В стандарте предусмотрены все размеры фланца и его масса. Следовательно, металлоемкость должна выражаться не в объемных единицах, как выше, а в единицах массы.
В некоторых случаях корпус аппарата и фланцы изготовляют из разных материалов. Например, на медных аппаратах устанавливают стальные фланцы. Следовательно, вместо металлоемкости в этом случае нужно использовать стоимость затраченного материала.
Таким образом, при изготовлении фланцев, корпуса и крышек, аппарата из одного и того же конструкционного материала критерий оптимизации имеет вид
, (9.2)
где Gi - массовая металлоемкость аппарата при диаметре Di;
g - плотность конструкционного материала;
n - количество корпусных фланцевых соединений на прочность;
Gфi - масса фланца, соответствующего диаметру Di.
В случае изготовления фланцев и корпуса аппарата из разных материалов критерий оптимизации примет вид:
, (9.3)
где qк - стоимость металла в изделии для корпуса, днища и крышки (руб. /кг);
qф - стоимость металла в изделии для материала фланцев.
Задачей оптимизации для критериев (9.2) и (9.3) является минимизация этих критериев:
Блок-схема алгоритма решения этой задачи приведена на рис.9.3.
Рис.9.3 Блок-схема алгоритма решения задачи (пример 2)
Пример 3. На площадке, ограниченной координатами от X* до Х* и Y* до Y* установлены 4 насоса (рис.9.4). Требуется поставить общий сборник так, чтобы суммарная длина трубопроводов, идущих от насосов к сборнику была минимальной. Таким образом, критерием оптимизации является длина трубопроводов.
Цель оптимизации - минимизировать длину трубопроводов.
Рис.9.4 Схема расположения сборника жидкости и насосов (пример 3)
Варьируемые параметры - координаты расположения сборника X0 и Y0. Координаты расположения насосов:
1 - X1, Y1;
2 - X2, Y2;
3 - Х3, Y3;
4 - X4, Y4.
Длина трубопроводов, соединяющих насос со сборником, в соответствии с теоремой Пифагора:
;
;
;
.
Суммарная длина трубопроводов . Задача оптимизации может быть записана в виде:
.
Координаты насосов X1, X2, X3, X4, Y1, Y2, Y3, Y4 являются фиксированными переменными.
Координаты сборника варьируются в пределах
; .
Дополнительных условий нет. Следовательно, эта задача на безусловный экстремум.
Эта задача, как и предыдущая, решается методом итерации. Сборник и насосы рассматривают как готовые объекты, характеристики которых заложены в базу данных, а результат решения может быть выдан в виде планировки цеха.
Задачи, подобные примерам 2 и 3, решаются с помощью ЭВМ.
Но наилучшей формой организации процесса проектирования является применение систем автоматизированного проектирования (САПР), то есть комплекса средств автоматизация проектирования, взаимосвязанного с подразделениями проектной организации и выполняющего автоматизированное проектирование [4].
9.2. Специфика проектной деятельности и виды проектных ситуацийПроектная деятельность имеет ряд специфических особенностей:
Продуктом проектной деятельности является упорядоченная совокупность сведений, служащих знаковой моделью объекта, в момент проектирования еще не существующего.
Процедуры проектирования реального объекта, соответствуют преобразованию его исходного описания в некотором конечном пространстве.
Способы преобразования информации при проектировании нельзя выразить в виде математических соотношений, то есть невозможно построить строгую математическую модель такого процесса преобразования.
В с вязи со сложностью проектируемых объектов на каждом этапе разработки в процесс вовлекаются различные специалисты, что придает проектированию характер коллективной деятельности.
Проектируемый объект входит в упорядоченную иерархию объектов и, с одной стороны, выступает как элемент системы более высокого уровня, а с другой - как система объектов более низкого уровня.
В соответствии с этим процесс проектирования можно разделить на два этапа: внешнего (объект как элемент системы более высокого ранга) и внутреннего проектирования (объект - система элементов более низкого ранга).
Проектирование, как правило, имеет итерационный многовариантный характер.
Для проектного творчества характерна декомпозиция - разбиение общей задачи на составные части.
При решении проектных задач можно выделить следующие проектные ситуации:
Проектируемый объект может быть скомпонован из готовых элементов и блоков. При этом имеются наибольшие возможности применения ЭВМ для автоматизации процедур документирования, хранения архивов, решения задач компоновки объекта из готовых элементов и т.д.
Для проектирования объекта нет полного набора компонентов, но существуют аналогичные, из которых изменением параметров можно получить недостающие. В данном случае ЭВМ используется для анализа и оценки вариантов построения компонентов, выбора их оптимальных параметров, компоновки и деталировки и т.д.
Не существует аналогичных элементов, но известны принципы их построения. Применение ЭВМ в этом случае возможно при использовании математических моделей, соответствующих используемым принципам.
Принципы построения элементов объекта не известны. Проектирование опирается на результаты проводимых фундаментальных и прикладных исследований ЭВМ в этом случае применяется для моделирования различных процессов и явлений, обработки данных и управления модельными и натурными испытаниями и пр.
Возрастание сложности проектируемых объектов привело к формированию концепции и методологии автоматизации проектирования, в которых моделирование является одним из основных методов обеспечения проектных работ. Поэтому можно сказать, что САПР основана на регулярном применении современных математических методов и средств вычислительной техники в процессе принятия проектных решений, в организации и управлении проектированием [4].
9.3. Виды САПРРазличают следующие четыре вида САПР.
Уникальные САПР, имеющие межотраслевой характер и создаваемые для решения крупнейших народнохозяйственных задач. Эти сверхбольшие системы представляют собой сети ЭВМ и вычислительных центров. В рамках таких систем возможно существенное наращивание вычислительных мощностей, создание межотраслевых банков данных и т.п. [4].
Универсальные САПР отраслевого назначения с системой коллективного пользования, обеспечивающие проектирование всей номенклатуры технических изделий отрасли. Такие САПР обычно строятся по двухуровневому иерархическому принципу: на первом уровне - мощная ЭВМ с большим объемом памяти и высоким быстродействием; на втором - периферийные ЭВМ, обслуживающие отдельные терминалы, устройства, абонентские пульты. Годовой объем проектной документации, создаваемый такой САПР, достигает 100 тысяч документов.
Специализированные САПР проектной организации, представляющие собой также системы коллективного пользования, но ориентированные на выполнение наиболее массовых проектных работ по конкретным изделиям и реализованные на ЭВМ серии ЕС или СМ.
С помощью таких систем проектировщик получает возможность использовать эффективные математические модели, методы моделирования и оптимизации на всех основных стадиях проектирования заданного объекта. Ниже в качестве примера будет рассмотрена структура одной из таких САПР.
Индивидуальные САПР, реализованные на мини - и микроЭВМ, предназначенные для выполнения отдельных видов инженерных расчетов и проектных работ. К этому виду САПР можно отнести и Автоматизированные Рабочие Места (АРМы), построенные на мини-ЭВМ. Ниже в качестве иллюстрации будет дано краткое описание АРМ "Автограф - 840".
Любая система автоматизированного проектирования представляет собой организационно-технический комплекс, состоящий из большого количества взаимосвязанных и взаимодействующих компонентов. Основной функцией САПР является автоматизированное проектирование технических объектов и их составных частей на основе применения математических и других моделей, автоматизированных проектных процедур и средств вычислительной техники.
Интегрированная САПР выполняет проектирование объекта от первичного описания до выдачи проекта, содержащего весь необходимый комплекс документации.
САПР является самостоятельной системой на предприятии (отдел САПР, бюро САПР). Но она может быть связана с подсистемами и банками данных других автоматизированных систем предприятия иди даже других организаций и предприятий: с автоматизированной системой научных исследований (АСНИ), обеспечивающей получение и обработку математических моделей для различных объектов и процессов; с автоматизированной системой управления (АСУ), организующей проектирование и распределение ресурсов на проектные работы; с автоматизированной системой управления производством (АСУП), для которого предназначен проектируемый объект, как предмет производства. Научно-технический уровень САПР во многом определяется этими связями, их полнотой и интенсивностью. Связи осуществляются по телефонному, кабельному каналам связи. Перспективной в настоящее время является разработка системы спутниковой связи САПР, расположенных в различных регионах страны, с мощными централизованными банками данных.
САПР следует рассматривать как постоянно развивающуюся (эволюционную) систему. Здесь наблюдается определенная аналогия между сложными техническими и биологическими системами.
Одним из проявлений этого развития является передача опыта и интуиции проектировщика машинной среде. При этом в ЭВМ создается определенная модель процесса проектирования, а сам человек под воздействием информационно-программной среды САПР повышает свой интеллектуальный уровень.
В соответствии с ГОСТ 23501.0-79 любая САПР должна иметь следующие виды базового обеспечения: методическое, программное, техническое, информационное и организационное.
Компоненты этих видов обеспечения приведены в табл.9.1 [5].
Таблица 9.1
Основные компоненты САПР
Виды базовых обеспечений | Компоненты | Основы построения |
Методическое (математическое и лингвистическое) | Теории, методы, способы, математические модели, алгоритмы, терминология, нормативы, алгоритмические и специальные языки, обеспечивающие методологию проектирования в САПР. | Перспективные методы проектирования, эффективные математические модели проектируемых объектов и их элементов, применение методов многовариантного проектирования и оптимизации. |
Программное | Общесистемные и прикладные программы и эксплуатационные документы, предназначенные для получения проектных решений. | Адаптируемость к различным конфигурациям ЭВМ и их операционным системам, модульность построения, обеспечения мультипрограммной работы, режим диалога, режим разделения времени. |
Техническое | Устройства вычислительной и организационной техники, средства передачи данных, измерительные и другие устройства, обеспечивающие функционирование САПР. | Серийные средства вычислительной техники общего назначения и другие современные технические средства. |
Информационное | Базы данных и системы управления базой данных (СУБД), образующие в комплексе автоматизированные банки данных (АБД). | Возможность логической структуризации данных по формальным признакам, гибкость организации и открытость структуры, защита данных. |
Организационное | Правила и приказы, регламентирующие права, обязанности и функции участников разработки и эксплуатации САПР: проектировщиков-пользователей САПР, программистов, операторов ЭВМ и внешних устройств, операторов банка данных (группы поддержки банка данных) и администратора САПР. | Прогрессивные методы организации проектирования, современные методы планирования и материального стимулирования. |
Более подробно виды обеспечения САПР, их структура рассмотрена в работе [6].
САПР отличается от обычной системы проектирования тем, что в ней с помощью ЭВМ частично или полностью автоматизированы процедуры подготовки и обработки информации, выбора принципов действия технических объектов и принятия решения, выполнения расчетно-вычислительных работ, проектирования документации.
Система автоматизированного проектирования в сравнении с обычной характеризуется рядом свойств, обусловленных широким применением ЭВМ: модифицированной организационной структурой, специализацией разработчиков по выполняемым видам работ (а не по типам разрабатываемых изделий), полной механизацией и автоматизацией рутинных операций, широким использованием технических средств проектирования, высоким профессиональным уровнем проектировщиков-пользователей САПР, ориентацией на наиболее творческие процедуры генерации вариантов решения и гипотез [5].
9.4. Этапы проектирования. Структура сапр 9.4.1 Алгоритмы проектированияПоследовательность процесса проектирования, вообще говоря, может различаться даже для одного и того же класса объектов. Причинами этого могут быть: исторический опыт и традиции" сложившиеся в проектной организации; наличие или отсутствие прототипа; установленные сроки и финансовые ресурсы и др.
Некоторые распространенные логические схемы процессов проектирования приведены в книгах Дж. Джонса [7], Дж. Диксона. [8], А.И. Половинкина [9]. На рис.9.5 приведена типовая логическая схема традиционного не автоматизированного проектирования, заимствованная из [5].
Сущность задачи может быть выражена в техническом задании недостаточно четко. Например, задание "спроектировать установку для опреснения морской воды" может быть выполнено с использованием процессов испарения и конденсации, либо с помощью вымораживания, либо посредством электродиализа.
Поэтому необходим этап уточнения задачи, определения направления поиска. Сегодня существует достаточно большой выбор методов поиска новых технических решений. Далее в выбранных перспективных направлениях проводится поиск решения. Некоторые из них были рассмотрены в предыдущих темах.
На основе выбранного решения разрабатывается эскизный проект и проводится инженерный анализ, который включает описание конкретного технического решения, моделирование, применение физических принципов, вычисления, проверку, оценку, оптимизацию [8]. По результатам оценки принимается решение о разработке технического проекта на основе выбранного варианта или о возвращении к поиску нового варианта решения. В случае положительной оценки решения ведется разработка технического проекта и рабочих чертежей опытного или головного образца. После изготовления этого образца и его стендовых или промышленных (для головного образца) испытаний осуществляют корректировку технической документации и ее утверждение для запуска технического объекта в серийное производство.
Рис.9.5 Логическая схема традиционного неавтоматизированного проектирования.
Рис.9.6 Структурная схема итерационного алгоритма процесса проектирования при декомпозиции процесса по уровням описания.
В данном случае декомпозиция была проведена по стадиям проектирования (эскизный, технический, рабочий проект). На каждом этапе происходит уточнение моделей, углубление анализа и, как следствие, приближение объекта к заданным в техническом задании характеристикам.
Декомпозиция может производиться и по уровням описания [9]. Тогда выделяет следующие уровни декомпозиции: системный - наиболее общее описание назначения объекта и его связей с учетом тех изменений, которые объект внесет в окружающую среду; архитектурный - описание структуры объекта; функциональный - описание законов функционирования подсистем объекта; конструктивный - детальное описание всех элементов системы.
При таком виде декомпозиции структурная схема итерационного алгоритма процесса проектирования приобретает вид, показанный на рис.5.6, но однотипность и инвариантность используемых процедур проектирования сохраняется. (Инвариантность процедуры - ее неизменность при изменении условий проведения, в данном случае - при изменении алгоритма проектирования).
При автоматизированном проектировании технология процесса проектирования в значительной мере определяется структурой и мощностью САПР.
9.4.2 Подсистемы САПРОсновными структурными звеньями САПР являются подсистемы. Подсистемой САПР называют выделенную по некоторым признакам часть САПР, обеспечивающую выполнение некоторой законченной проектной процедуры с получением соответствующих проектных решений и проектных документов. Базовые этапы и процедуры проектирования реализуются следующими подсистемами преобразования информации, входящими в состав САПР любого масштаба (рис.9.7).
9.4.2.1 Информационная подсистемаОсновная задача этой подсистемы состоит в сборе, хранении, поиске, упорядочении, пополнении, выдаче всей необходимой для обеспечения процесса проектирования информации. Применение ЭВМ позволяет создавать базу данных как совокупность упорядоченных комплексных сведений о проектируемом объекте, включающих: мировой научно-технический уровень, фиксируемый в виде публикаций, описаний открытий и изобретений; фонд методов генерации вариантов решения, включая синтез новых принципов действия, с библиотекой физических эффектов; методой проектирования, представляющие собой формализованный коллективный опыт специалистов в данной области; описания параметров и характеристик проектируемого объекта, его моделей для различных стадий проектирования; архив, хранилище накопленного в системе опыта в виде уже имеющихся решений как всей задачи в целом, так и ее отдельных фрагментов; описания типовых элементов, комплектующих изделий, материалов; руководящие и справочные данные, нормативны, стандарты, положения и другие данные, регламентирующие процесс проектирования.
Рис.9.7 Схема взаимодействия базовых подсистем САПР и пользователя.
Имеется система управления базой данных, регулирующая механизм доступа к ним (запись, объединение, старание или выдачу информации) в зависимости от запросов и их приоритетов, машинных ресурсов и т.д.
Построение базы данных - сложный и трудоемкий процесс, определяющий во многом эффективность функционирования всей САПР. База данных со своей системой управления образует банк данных.
Информационная подсистема постоянно пополняется новыми данными и очищается от устаревших. Этим занимается специальная группа специалистов, называемая группой поддержки банка данных.
Наличие в САПР информационной подсистемы позволяет иметь безызбыточную, полную, достаточную и актуальную информацию о проекте.
Важной характеристикой САПР является степень ее информационной связи с окружающей средой. Система называется статической, если в процессе проектирования не требуется информация о текущем состоянии внешней среды в данный момент времени и динамической, если при функционировании система непрерывно потребляет такую информацию из источников, находящихся вне САПР [5].
9.4.2.2 Подсистема поиска решений технической задачиРазработка вариантов решения технической задачи соответствует творческому этапу проектирования, при реализации которого проектировщик использует все свои знания и умение. Поэтому автоматизация решения этой задачи является одним из важнейших направлений в проблеме искусственного интеллекта. Трудность моделирования интеллектуальной деятельности породили у ряда специалистов сомнения в возможности использования ЭВМ на начальных творческих этапах проектирования. Однако имеющийся опыт показывает, что программы, построенные на основе существующих методов поиска новых технических решений (метод эвристических приемов, дерево целей, морфологический анализ и синтез и др.) способны сформировать технические решения на уровне изобретений, совершенствующих известное устройство, способ или вещество [12].
Подсистема помогает проектировщику в решении двух классов задач: в поиске новых принципов действия технических объектов и поиске вариантов решения при известных принципах действия. Подсистема содержит различные методики поиска решения технических задач. Многие творческие задачи не поддаются полной формализации. В этом случае решение принимает человек в результате человеко-машинного диалога. Подобные методы автоматизированной генерации решений повышают интеллектуальные способности и творческую активность проектировщиков.
Учитывая важность рассматриваемой подсистемы, в организационной структуре САПР желательно предусматривать группу специалистов в области эвристики, пополняющей подсистему новыми алгоритмами творчества, учитывающими как особенности характера и структуры решаемых задач, так и особенности психической деятельности человека [5].
9.4.2.3 Подсистема инженерного анализаОсновное назначение подсистемы - выполнение всех вычислительных работ, связанных с детализацией выбранного варианта решения проектной задачи. Автоматизация вычислений позволяет использовать более сложные модели объектов и более мощные вычислительные методы, что значительно приближает показатели модели к действительным показателям объекта. Арсенал вычислительных методов постоянно пополняется, многие инженерные задачи стимулируют разработку новых подходов и методов, новых критериев и алгоритмов.
При выборе параметров объекта возможно использование различных видов моделей, к которым относятся:
а - Аналитические (детерминированные - непрерывные и дискретные, стохастические), причем этапам эскизного, технического, рабочего проектирования соответствуют свои модели;
и - Имитационные, если объект отличается неопределенностью функционирования Такие модели воспроизводят процесс функционирования проектируемого объекта, а оценка различных вариантов решения при варьировании управляющими переменными позволяет найти наиболее приемлемый из них;
э - Эвристические и игровые модели, когда объект характеризуется неопределенностью функционирования и не установлены значения его параметров. В этом случае используется интуитивный выбор решения в условиях неполной информации.
В процессе проектирования рассмотренные модели используются в обратном порядке: от самых общих до наиболее точных.
Поскольку методика проектирования постоянно уточняется и модифицируется то структура САПР должна допускать возможность изменения отдельных частей системы без изменения остальных составляющих или с их минимальными изменениями, этим требованиям наиболее полно отвечают функциональные структуры интегрированных САПР. Такие системы характеризуются модульным принципом построением математического обеспечения, наличием встроенных операционных систем и набором альтернативных проектных процедур и их оценок на различных этапах процесса проектирования [5].
9.4.2.4 Подсистема ведения и изготовления документацииПодсистема предназначена для изготовления и выдачи проектных документов (чертежей, технических описаний, схем, графиков, таблиц), необходимых для создания объекта проектирования и позволяет, таким образом, автоматизировать наиболее трудоемкую, однообразную и утомительную рутинную работу. Автоматизация этих процессов позволяет резко сократить затраты труда и времени, а также сравнительно легко обеспечить внесение изменений во все части проектной документации.
Автоматическое изготовление документации осуществляется с помощью чертежных автоматов и графопостроителей, устройств микрофильмирования, репродуцирования и т.д.
Этой подсистемой осуществляется компоновка документов, т.е. разбиение его на страницы стандартного формата, размещение графических символов на поле страницы, соединение их линиями.
Рассмотренные подсистемы составляют основу технологии автоматизированного проектирования технических объектов. Эту технологию проектирования применяет проектировщик, которому достаточно знать правила записи технического задания на проектирование с помощью специальных языков описания объекта и директив управления системой, чтобы инициировать процесс обработки и отображения информации в САПР. Специальные диалоговые средства (дисплеи, АРМы) позволяют ему оперативно получать промежуточные результаты в процессе решения задачи и иметь возможность влиять на ход ее решения, не прерывая вычислительного процесса.
В САПР имеются и другие подсистемы, которые в общем случае подразделяются на объективно-ориентированные, осуществляющие разработку того или иного объекта на определенной стадии проектирования С например, конструирования деталей объекта, технологического проектирования), и инвариантные или объектно-независимые подсистемы, которые осуществляют функции управления и обработки информации, не зависящие от особенностей проектируемого объекта (диалоговых процедур, численного анализа, оптимизации, информационно-поисковых процедур, ввода-вывода графической информации).
Некоторые из этих подсистем описаны ниже при рассмотрении примеров промышленных САПР.
Подсистемы и компоненты САПР соединяются и взаимодействуют друг с другом под управлением операционной программы проектирования, отображающей логическую схему построения проекта, в соответствии с директивой пользователей системы. Подвергаясь воздействию проектных процедур, модель проекта развивается, накапливая и структурируя поступающую все более детальную проектную информацию таким образом, чтобы в любой момент представить ее в распоряжение конструктора или какой-либо из программ системы. Такой организацией системы достигается обеспечение единства модели проекта на всех стадиях процесса проектирования. Наличие общего для всех программ образа проектируемого объекта существенно отличает САПР от простого объединения разрозненных программ, каждая из которых требует специфического описания данных о проекте.
9.4.3 Принципы построения САПРПри создании и развитии САПР применяются основные общесистемные принципы:
включения, предусматривающий согласование параметров и возможностей конкретной САПР с системой более высокого иерархического уровня;
системного единства" обеспечиваемый тесными связями всех подсистем САПР;
развития, предусматривающий наращивание и совершенствование компонентов САПР и связей между ними;
комплексности, обеспечивающий связность проектирования отдельных элементов и всего объекта в целом на всех стадиях проектирования, т.е. своеобразный конвейер проектирования;
информационного единства, требующий использования в подсистемах САПР установленных соответствующими нормативными документами проблемно-ориентированных входных языков, языков программирования, способов представления информации, терминов, символов и т.д.;
совместимости, обеспечивающий совместное функционирование всех подсистем САПР при сохранении открытой структуры системы в целом;
инвариантности, требующей чтобы подсистема и компонента сапр были по возможности универсальными или типовыми, т.е. инвариантными к проектируемым объектам и отраслевой специфике;
моральной живучести, предполагающий наличие в САПР средств настройки на ограниченный, но достаточно представительный класс технических баз проектирования.
Система должна легко адаптироваться к этим базам. Предусматривается три уровня настройки системы: системный, процедурный и параметрический. На системном уровне осуществляется смена общесистемных программ, например, связанных с переходом на новые физические принципы реализации проектируемого объекта. Процедурный уровень используется при переходе на новый класс объектов проектирования и обеспечивает замену отдельных блоков в программных модулях входного описания объекта, инженерного анализа, документирования. На параметрическом уровне производится настройка системы внутри некоторого класса проектируемых объектов [5].
9.5. Примеры промышленных сапр 9.5.1. Система автоматизированного проектирования предприятий химической промышленности (САПРХИМ)Более десяти лет в Государственном институте азотной промышленности и промышленности органического синтеза (ГИАП) функционирует система автоматизированного проектирования предприятий химической промышленности. Для ее создания существовал целый ряд предпосылок. Одна из них - чрезвычайно высокая стоимость проекта при традиционных методах проектирования - до трех процентов стоимости объекта (на Западе 10-12%). При этом создание программ для автоматизации отдельных проектных операций, не объединенных в САПР, позволяет автоматизировать лишь 15-20% объема проектных работ.
Второй предпосылкой является длительность процесса традиционного проектирования.
Задание на проектирование выдается в несколько этапов. Сначала выдается предварительное задание. После начальной проработки этого задания появляется уточненное задание. Затем следует согласование задания с целым рядом инстанций.
Вследствие этой этапности в процессе проработки проекта возникают изменения в задании. Это - источник ошибок в проектах, которые приходится исправлять. Поэтому проектирование всегда является итерационным процессом. Уже это делает целесообразным использование ЭВМ.
Проект требует решения экологических задач. Экологические расчеты в ручную не реализуются. Длительность традиционного проектирования и строительство от начала планирования до выпуска первой продукции составляет в России 10 - 12 лет.
Сегодня это, строго говоря, недопустимо. Получается, что только что вошедшее в эксплуатацию предприятие содержит проектные решения 15 - 18-и летней давности, учитывая, что, начиная проектирование, проектировщики брали не новейшие, а проверенные решения.
Создание САПР позволяет сократить сроки проектирования и повысить его качество.
Одной из предпосылок создания САПР является разное повышение уровня математизации проектирования. В частности в САПРХИМ предусмотрено автоматизированное решение задач, которые можно классифицировать следующим образом.
Расчеты аппаратов.
Балансовые расчеты схемы производства. Здесь требуется решение систем линейных уравнений высокого порядка, а в расчетах кинетики процессов и систем нелинейных уравнений.
Расчеты оборудования на прочность, ветровую и сейсмическую нагрузку.
Расчеты трубопроводов. Следует иметь в виду, что разветвленный трубопровод представляет собой статически неопределимую систему с несколькими сотнями неизвестных. Требуется решение как линейных, так и нелинейных уравнений.
Расчет КИП и автоматики. В этом случае требуется решение систем нелинейных дифференциальных уравнений, уравнений в частных производных.
Задачи оптимизации. Здесь широко распространены задачи линейного, нелинейного, динамического программирования.
Информационно-логические задачи - поиск и выбор решения, подбор оборудования, аналогов.
Геометрические задачи - компоновка размещения оборудования, трассировка трубопроводов.
Создание САПР такого масштаба - длительная многолетняя работа. Поэтому ее подсистемы вводятся в эксплуатацию поочередно, система постоянно расширяется и развивается. Объединение раздельно создаваемых подсистем в единую систему обеспечивается на уровне использования общих технических средств, общего методического, программного и организационного обеспечения.
Разработка системы начата в 1974 г. В 1980 г., когда была разработана общая структура САПРХИМ, предусматривались следующие подсистемы, назначение которых легко определяется по их наименованию, взятому из традиционно употребляемой проектировщиками терминологии:
1. Экономика;
2. Генеральный план;
3. Аппаратурно-технологическое проектирование;
4. Трубопроводы;
5. Изоляция;
6. Автоматизация;
7. Строительное проектирование;
8. Электротехника;
9. Сантехника;
10. Теплоснабжение;
11. Экология,
12. Организация строительства; 13. Проектно-заказная документация; 14. Холодоснабжение; 15. Компоненты конструктивных расчетов, отдельных узлов и аппаратов.
Каждая из подсистем в свою очередь состоит из нескольких компонентов. Например, в подсистему "Экономика" входят: технико-экономические обоснования, технико-экономические расчеты на стадиях технического и рабочего проектов, сводные сметно-финансовые расчеты и библиотека технико-экономических показателей производств отрасли.
В подсистему "Автоматизация" входят: проектирование локальной автоматизации, проектирование систем АСУТП, проектирование систем АСУП.
В связи с тем, что в подсистеме работают десятки, а иногда и сотни программ и подсистема постоянно модифицируется, развиваясь вглубь и вширь, расширяя свои функциональные возможности и класс решаемых задач, система Проектируется таким образом, чтобы изменения и дополнения, вносимые в нее, не нарушали бы общей работоспособности и требовали минимальных затрат на ее поддержание.
Рис.9.8 Структурная схема САПРХИМ
В 1984 г. функционирующая САПРХИМ имела структуру, показанную на рис.9.8. Подсистемы высшего иерархического уровня соответствуют обычным составным частям проекта промышленного предприятия. Подсистемы более низких иерархических уровней на рис.9.8 приведены только для технологической части, которая наиболее разработана и соответствует профилю студентов, для которых предназначено настоящее пособие. Ниже приводятся краткие характеристики отдельных подсистем и модулей, приведенных на рис.9.8.
Технологическая часть состоит из пяти подсистем следующего иерархического уровня.
САПРАЗОТ - система, обеспечивающая выполнение технологической части проекта азотных производств, которая, в свою очередь, делится на три подсистемы: АСТР, ФИЗХИМ, СПЛАЙНЫ.
АСТР - автоматизированная система технологических расчетов. Она содержит около 100 программ и предусматривает решение систем нелинейных уравнений, оптимизацию, печать результатов.
ФИЗХИМ - система расчета физико-химических свойств веществ для азотной промышленности. Она позволяет вычислить основные свойства индивидуальных газов (углеводородов и газов основной неорганической химии) и их смесей при давлениях от 1 до 300 атм (0,1 - 30 МПа) и температурах от 0 до 1200°С. Предусмотрена возможность расширения-круга веществ и свойств. Система ФИЗХИМ состоит из трех основных частей: банка физико-химических констант, библиотеки программ расчета отдельных физико-химических свойств, обслуживающих программ.
СПЛАЙНЫ. Для обработки информации о поверхности изделия на ЭВМ должна быть сформулирована математическая модель этой поверхности. Это сравнительно нетрудно сделать, когда сложная поверхность может быть разбита на элементы, каждый из которых представляет собой простейший геометрический объект: круговой цилиндр или конус, сферу или участок плоскости, ограниченный обрезками прямых или дугами конических сечений. В тех случаях, когда поверхности не образуются простейшими элементами, приходится искать иные решения.
Английское слово spline переводится как "упругая рейка". Такую рейку используют в качестве гибкого лекала при вычерчивании плоских кривых по опорным точкам. Форма осевой линии рейки на участке между двумя соседними опорами описывается в прямоугольных координатах уравнением равновесия
. (4)
Здесь левая часть уравнения является выражением кривизны кривой, а правая - изгибающий момент. Момент на соседнем участке кривой может иметь иную зависимость от координаты X и кривизна соответственно будет иной.
Но поскольку каждая опора является одновременно концом предшествующего участка и началом последующего, значение момента в опоре является граничным условием для обоих участков.
Таким образом, на стыках действует условие сопряжения, обеспечивающее правильную стыковку соседних участков. Описание формы кривой на каждое участке имеет одну и ту же структуру и различается только значениями числовых констант.
Абстрагируясь от равновесной формы рейки, приходим к понятию функции с кусочной структурой и повторяющемся на каждом звене строением, но с различными значениями параметров. Такие функции и их обобщения на случай нескольких переменных получили название сплайн-функций или просто сплайнов.
В более низких иерархических уровнях подсистемы САПРАЗОТ имеет библиотека общетехнологических модулей "Технолог", а далее модули азотных производств: "аммиак", "метанол", "азотная кислота", "капролактам".
Перечисленные моду ли особенно наглядно показывают возможности дальнейшего расширения САПРХИМ, поскольку они далеко не исчерпывают номенклатуру производств, объединяемых в рамках одного предприятия азотнотукового профиля. В порядке иллюстрации в табл.9.2 приведена номенклатура производств некоторых комбинатов, заводов, производственных объединений и акционерных обществ указанного профиля.
САПРСВОД - подсистема того же иерархического уровня, что и САПРАЗОТ. Эта подсистема обеспечивает автоматизированное составление комплектующих спецификаций.
Таблица 9.2
Комплекс производств, функционирующих на предприятиях азотной промышленности
Место расположения завода, комбината, ПО, АО | Производимые химические продукты | |||||||||||||||||||||
Аммиак | Азотная кислота | Аммиачная селитра | Карбамид | Нитрофоска | Нитроаммофоска | Уксусная кислота | Метанол | Ацетальдегид | Бутиловый спирт | Формалин | Ацетилен | Себациновая кислота | Поливинилацетатная эмульсия | Серная кислота | Циклогексанин | Сульфат аммония | Капролактам | Медицинская закись азота | Стирол | Полистирол | Ионообмен смолы | |
Невинномысск | + | + | + | + | + | + | + | + | + | + | ||||||||||||
Новгород | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||
Черкассы | + | + | + | + | + | + | ||||||||||||||||
Россошь | + | + | + | + | ||||||||||||||||||
Тольятти | + | + | + | + | + | + | + | |||||||||||||||
Горловка | + | + | + | + | + | + | + | + |
САПРТРУБ - подсистема, обеспечивающая автоматизированное проектирование трубопроводов, включает следующие подсистемы более низкого иерархического уровня. ПРТ - подсистема прочностных расчетов трубопроводов и их самокомпенсации.
Промышленный трубопровод обычно представляет собою многократно статически неопределимую систему. Раскрытие статической неопределимости является основной проблемой расчета трубопровода; далее предусмотрен расчет опор всех типов, температурных удлинений. Учитывается внутреннее давление" весовая нагрузка, смещение концевых точек. В динамических расчетах учитывается трение в опорах, смещение промежуточных опор.
ГРТ - подсистема гидравлических расчетов трубопроводов.
СТРУНА - система трубопроводов универсального назначения. Данная система предназначена для решения информационно-логических задач. Она содержит описание стандартных деталей и обеспечивает их выбор по шифру. Подсистема содержит также описание опор трубопроводов и их составных элементов, описание некоторых других нестандартных элементов трубопроводов.
СИАР - подсистема справочной информации по арматуре, обеспечивающая распечатку необходимых разделов справочника. О степени информативности подсистемы можно судить по тому факту, что объем ее памяти составляет 10 мегабайт.
СУБД - система управления базой данных. Подсистема текстовых документов обеспечивает автоматизированное выполнение текстов, включая расчетно-пояснительные записки.
Особенностью подсистемы является использование языка "Рапоза", базирующегося на русском языке, в то время как в остальных подсистемах используются преимущественно модификации ПЛ/1.
В число текстовых документов входят задания на смету по трубопроводам, на тепловую изоляцию, на сводные ведомости материалов, и арматуры.
Подсистема "Чертежи" обеспечивает автоматизированный выпуск графической документации.
К тому же иерархическому уровню, что и САПРТРУБ относится САПР КР.
САПР КР - система автоматизированного выполнения конструкторских расчетов, в которую в качестве подсистемы более низкого иерархического уровня входит ДАШ - диалоговая автоматизация расчетов проектировщика.
Последняя подсистема, которую следует упомянуть - САПР ТИ, т.е. подсистема тепловой изоляции. Подсистема учитывает 15 разных видов потерь тепла; варианты мест прокладки трубопроводов (на улице, в цехе, в земле); температуру среды, диаметр поверхности.
Подсистема содержит всего 200 вариантов решений.
В заключение отметим, что система САПРХИМ базируется на использовании ЕС ЭВМ.
9.5.3. AutoCADШирокое распространение персональных ЭВМ привело к рождению целого ряда фирм, специализирующихся на программном обеспечении ПЭВМ. Так в 1982 г. в Калифорнии (США) была зарегистрирована фирма AutoDESK, которая в том же году выпустила первую версию пакета программ AutoCAD для автоматизации графических работ.
К 1990 г. AutoDESK завоевала 60% мирового рынка систем автоматизированного проектирования (САПР) для всех типов ЭВМ. При этом самое большое количество пакетов программ было продано в Чехословакию (1200) и в Советский Союз (1500). Если учесть распространение в России несанкционированного копирования программ, можно считать AutoCAD сегодня самой распространенной разновидностью САПР в машиностроении России. AutoCAD фактически стал международным стандартом.
AutoCAD представляет пользователю ПЭВМ возможности, которые ранее были доступны только пользователям больших и дорогих систем.
Практически не существует ограничений на тип чертежей, которые можно выполнять с использованием AutoCAD. Все, что может быть создано вручную, может быть сгенерировано AutoCADом. Вот некоторые возможности системы:
архитектурные чертежи всех типов;
проектирование интерьера и планирование помещений;
создание графиков работы и организационных диаграмм;
графика любого типа;
чертежи объектов электроники, химии, механики, гражданского строительства;
рисунки и графики математических функций;
проектирование освещения театров;
музыкальные партитуры;
технические иллюстрации и диаграммы сборки;
эмблемы компаний и фирм;
визитные карточки;
выполнение художественных рисунков.
Для эффективной работы с системой AutoCAD не требуется специальных знаний в области ЭВМ: нужна практика и ясное понимание возможностей системы.
AutoCAD допускает добавление в программы собственных команд пользователя, отвечающих его прикладным требованиям.
Пакет AutoCAD является мощным средством черчения. Он позволяет выполнить чертеж любой сложности, дает возможность легко исправлять ошибки в чертежах и вносить в них значительные изменения без переделывания всего чертежа.
Для отображения чертежа служит графический монитор. AutoCAD обеспечивает набор примитивов для использования при выполнении чертежей.
Примитив - это элемент чертежа, такой как линия, окружность, строка текста и т.д. Выбор примитива пользователь осуществляет вводом соответствующей команды. Команда могут быть введены с клавиатуры, выбраны из меню на экране или введены с помощью нажатия кнопки на цифровом планшете либо на многокнопочном указательном устройстве. Затем, отвечая на запросы, появляющиеся на экране дисплея, пользователь обеспечивает определенные параметры для выбранного примитива. Эти параметры всегда включают точку на чертеже, где должен быть расположен данный примитив; иногда также требуется размер или угол вращения. После ввода этой информации примитив появится на экране графического монитора. После этого можно вводить новую команду, чтобы вычертить другой примитив или выполнить иную функцию AutoCAD.
Другие функции AutoCAD позволяют изменять чертеж различными способами. Примитивы можно стирать, перемещать или копировать для образования повторяющихся структур. Можно изменять вид чертежа, отображенного на, графическом мониторе или вывести информацию о чертеже. Копил чертежа на бумаге можно получить на графопостроителе или принтере.
9.5.2.1 Оборудование, требуемое для использования AutoCADПомимо базовой ПЭВМ, включающей память, процессор, клавиатуру, текстовой монитор и дисковые устройства, для использования AutoCADа требуется графический монитор с высокой разрешающей способностью. Для ПЭВМ, на микропроцессорах может потребоваться соответствующий математический сопроцессор.
В некоторых компьютерах AutoCAD использует два монитора: один для ввода команд и вывода теста, а другой для графики. В таких системах графический монитор может также отображать меню и иметь строку для запросов.
В иных системах используется один монитор как для графики, так и для работы с текстом.
Перечисленное оборудование достаточно для базовой установки AutoCAD, чтобы формировать графическое изображение на экране монитора. Для получения твердых копий чертежей (на бумаге) требуется дополнительное оборудование: плоттеры (графопостроители) или мозаичные принтеры; устройства указания в виде мыши, светового пера или цифрового планшета; связные порты для подключения этого оборудования к компьютеру.
Устройства указания предназначены для преобразования положения курсора (указателя) в цифровой код и передачи его для последующей обработки ПЭВМ.
Заметим, что AutoCAD может поддерживать в одной системе и одновременно оба типа графопостроителей. Принтеры-плоттеры (т.е. принтеры с графическими возможностями) обычно дают более грубые рисунки, чем перьевые графопостроители, но выполняют чертеж они гораздо быстрее.
Таким образом, можно использовать принтер-плоттер для частой проверки начерченного, а затем окончательно отработанный чертеж посылать на перьевой графопостроитель.
Рассмотренные призеры САПР дают представление о современном состоянии автоматизации проектирования.
Следует заметить, что теоретические основы САПР, применяемых в химической технологии и списание мощной системы "САПР нефтехим" приведены в книге В.В. Кафарова и В.Н. Ветохина [10].
80. Алферов А.В. Механизация и автоматизация проектно-конструкторских работ. - М.: Машиностроение, 1973. - 192с.
81. Савинов Ю.А. Системы автоматизации проектирования // Машиностроитель. - 1978. - № 9. - С.40-42.
82. ГОСТ 22487-77 Проектирование автоматизированное. Термины и определения.
83. Нуждихин В.Г., Беседин А.Л. Системы автоматизированного проектирования: создание и внедрение. - М.: 3нание, 1964. - 64с.
84. Петренко А.И., Семенков О.И. Основы построения систем автоматизированного проектирования: Учебник для вузов. - Киев: Вища школа, 1985. - 294с.
85. Построение современных систем автоматизированного проектирования / Жук К.Д., Тимченко А.А., Родионов А.А. и др. - Киев: Наукова Думка, 1983. - 248с.
86. Джонс, Дж.К. Методы проектирования. - М.: Мир, 1986. - 326с.
87. Диксон Дж. Проектирование систем: изобретательство, анализ и принятие решений. - М.: Мир, 1969. - 440с.
88. Половинкин А.И. Основы инженерного творчества. - М.: Машиностроение, 1988. - 368с.
89. Кафаров В.В., Ветохин В. Н, Основы автоматизированного проектирования химических производств. - М.: Наука, 1987. - 623с.
90. Капитонов Е.Н. Основы систем автоматизированного проектирования. Учебное пособие. - Тамбов: Изд-во ТГТУ, 1996. - 41с.
... масштабе (на чертеже) равны: ; ; ; , здесь и далее величина в скобках обозначает размер в миллиметрах на чертеже. ПЛАН СКОРОСТЕЙ Построение планов скоростей и ускорений проводится на основе последовательного составления векторных уравнений для точек звеньев механизма, начиная с ведущего звена, угловая скорость w1 которого задана. Находим численное значение скорости точки B из выражения: ...
... существенные случайные независимые отклонения при изготовлении штырей. Конструирование преобразователей фильтров на ПАВ. При конструировании фильтров на ПАВ необходимо решить ряд вопросов, связанных с вторичными эффектами, к числу которых в первую очередь следует отнести эффекты отражения акустических волн от штырей преобразователей, от краев звукопровода и т.д. Наиболее существенное влияние ...
... – это законченный элемент ИМС, который можно использовать при проектировании аналоговых микросхем. 1 Общие принципы построения топологии биполярных Имс Общего подхода к проектированию биполярных интегральных микросхем нет и быть не может, каждый тип характеризуется своими особенностями в зависимости от требований и исходных данных ИМС. Исходными данными при конструировании микросхем являются: ...
... воспринимаются даже на высоком научном уровне. Стремление упростить материал вряд ли целесообразно. Глава 3. Методические рекомендации курса «Математические основы моделирования 3D объектов» базового курса «компьютерное моделирование» для студентов педагогических ВУЗов специальности преподаватель информатики §1. Принципы построения электронного учебника Прежде чем рассмотреть ...
0 комментариев