2. Выбор двигателя и кинематический расчёт привода
2.1 Определение мощности и частоты вращения двигателя
Определяем требуемую мощность рабочей машины:
Ррм = Fv,
где F – тяговое усилие цепи, кН;
v – линейная скорость грузовой цепи, м/с.
Ррм = 4×0,5 = 2,0 кВт.
Определим общий КПД привода
h = hзпhопhмh2пкhпс,
где hзп – КПД закрытой передачи; hоп – КПД открытой передачи; hм – КПД муфты; hпк – КПД одной пары подшипников качения; hпс – КПД одной пары подшипников скольжения (на приводном валу рабочей машины).
h = 0,8×0,92×0,98×0,992×0,985 = 0,696.
Определяем требуемую мощность двигателя:
Рдв.треб = Ррм/h = 2,0/0,696 = 2,87 кВт.
По [1, таблица К9] выбираем двигатель 4АМ100S4У3 с номинальной мощностью Рном=3кВт и номинальной частотой вращения nном = 1435 об/мин.
2.2 Определение передаточного числа привода и его ступеней
Определим частоту вращения приводного вала рабочей машины:
nрм = 60×1000v/(D),
где v – линейная скорость грузовой цепи, м/с;
D – диаметр звездочки, мм.
nрм = 60×1000×0,5/(330×3,14) = 29,0 об/мин.
Определяем передаточное число привода:
u = nном/nрм = 1435/29,0 = 49,56.
Определим передаточное число открытой передачи, принимая передаточное число редуктора uзп = 20:
uоп = u/uзп = 49,56/20 = 2,48.
2.3 Определение силовых и кинематических параметров привода
В соответствии с заданной последовательностью соединения элементов привода по кинематической смене используем следующие формулы для вычисления мощности, частоты вращения, угловой скорости и вращающих моментов на валах привода:
Вал двигателя:
nдв = nном = 1435 об/мин;
wдв = pnдв/30 = 3,14×1435/30 = 150,2 рад/с;
Pдв = 2,87 кВт;
Тдв = Рдв/wдв = 2,87×1000/150,2 = 19,1 Н×м.
Быстроходный вал:
n1 = nдв = 1435 об/мин;
w1 = wдв = 150,2 рад/с;
Р1 = Рдвhмhпк = 2,87×0,98×0,99 = 2,79 кВт;
Т1 = Тдвhмhпк = 19,1×0,98×0,99 = 18,6 Н×м.
Тихоходный вал:
n2 = n1/uзп = 1435/20 = 71,75 об/мин;
w2 = w1/uзп = 150,2/20 = 7,51 рад/с;
Р2 = Р1hзпhпк = 2,79×0,8×0,99 = 2,21 кВт;
Т2 = Т1uзпhзпhпк = 18,6×20×0,8×0,99 = 294 Н×м.
Вал приводной рабочей машины:
nрм = n2/uоп = 71,75/2,48 = 28,95 об/мин;
wрм = w2/uоп = 7,51/2,48 = 3,03 рад/с;
Ррм = Р2hопhпс = 2,21×0,92×0,985 = 2,0 кВт;
Трм = Т2uопhопhпс = 294×2,48×0,92×0,985 = 660 Н×м.
Таблица 1 – Силовые и кинематические параметры привода
3. Расчет червячной передачи
3.1 Выбор материала червячного колеса
Определим скорость скольжения:
4,3×7,51×20×(294)1/3/1000 = 4,29 м/с.
По [1, таблица 3.5] выбираем из группы I материал БрО10Ф1, полученный способом литья в кокиль, sв = 275 Н/мм2, sт = 200 Н/мм2.
3.2 Определение допускаемых контактных и изгибных напряжений
Допускаемые напряжения для червячного колеса определяем по формулам из [1, таблица 3.6].
Наработка за весь срок службы:
N = 573w2Lh = 573×7,51×20000 = 86064600.
Коэффициент долговечности при расчете на контактную прочность:
KHL = (107/N)1/8 = (107/86064600)1/8 = 0,76.
Определяем допускаемые контактные напряжения:
[s]Н = 0,9KHLCvsв = 0,9×0,76×1×275 = 189,1 Н/мм2,
где Cv – коэффициент, учитывающий износ материала [1, С.55].
Так как червяк располагается в масляной ванне, то полученное значение допускаемого напряжения не изменяем, т.е. [s]Н = 189,1 Н/мм2.
Коэффициент долговечности при расчете на контактную прочность:
KFL = (106/N)1/9 = (106/86064600)1/9 = 0,61.
Определяем допускаемые напряжения изгиба:
[s]F = (0,08sв + 0,25sт)KFL = (0,08×275 + 0,25×200)×0,61 = 43,9 Н/мм2.
0 комментариев