1.3 Переработка хлорорганических отходов. Производство перхлоруглеводородов
Создание безотходных технологий производства хлорорганических продуктов - одно из главных требований, предъявляемых при разработке современных процессов. Проблема уменьшения отходов, как правило, решается в двух направлениях: за счет повышения селективности процесса, т. е. применения соответствующих каталитических систем и оптимальных условий проведения процесса; с другой стороны за счет рациональной переработки образующихся отходов.
Основные используемые методы переработки хлорорганических отходов - огневое обезвреживание, хлорирование при повышенных температурах и хлоролиз (хлорирование при повышенной температуре и давлении).
Самый распространенный метод - огневое обезвреживание, сущность которого заключается в высокотемпературном (1100-1800°С) окислении за счет теплоты сгорания отходов и тепла, выделяющегося при сгорании дополнительного количества топлива (в случае малой теплотворной способности отходов). В процессе работы отходы практически полностью превращаются в НС1, С12, СО2, Н2О. Достоинство метода - относительная простота, незначительные капитальные вложения. В установках можно обезвреживать практически все виды отходов. Недостатки метода - полная потеря углеродной части отходов (превращение в СО2); трудность использования НС1, выделяемого в виде загрязненной соляной кислоты. Ввиду этого часто проводят просто нейтрализацию кислоты; в этом случае теряется и хлор, содержащийся в отходах, а также образуется большое количество дополнительных солевых стоков; в случае нарушения режима возможно неполное сгорание отходов с образованием высокотоксичных соединений.
Исчерпывающее хлорирование как самостоятельный процесс или в сочетании с окислительным хлорированием является по сравнению с процессом сжигания более эффективным методом переработки, поскольку отходы превращаются в ценные хлорорганические продукты — четыреххлористый углерод, три- и тетрахлорэтены. Исчерпывающее хло рирование (или так называемый хлоролиз) алифатических углеводородов и их хлорпроизводных, осуществляемый при температуре 450-600°С и давлении 0,1-0,3 МПа, приводит к образованию перхлоруглеводородов: четыреххлористого углерода, тетрахлорэтена, гексахлорэтана, гексахлорбутадиена, гексахлорциклопентадиена и гексахлорбензола. Ароматические и жирноароматические соединения в этом случае превращаются в основном в гексахлорбензол, который далее разлагается в очень жестких условиях. В зависимости от вида отходов степень использования отходов составляет 90 %. В процессе хлоролиза одновременно протекает множество последовательно-параллельных реакций хлорирования, дехлорирования, дегидрохлорирования, разрыва углеродных связей, диспропорционирования. В условиях промышленного хлоролиза, осуществляемого при температуре 600°С в объеме или в псевдоожиженном слое (например, песка), в тетрахлорэтен и четыреххлористый углерод могут быть переработаны в основном хлорпроизводные, содержащие до четырех атомов углерода в молекуле. Суммарно процесс хлоролиза для хлоруглеводородов предельного ряда описывается следующими уравнениями:
(1.12)
К недостаткам этого процесса можно отнести прежде всего ограниченность ассортимента перерабатываемых отходов, в основном C1-С4. При переходе к отходам, содержащим 4 и более атомов углерода, резко возрастает количество вторичных отходов, которые необходимо подвергать термическому обезвреживанию или захоронению. Переработка полихлоридов С6 этим методом практически невозможна.
Осуществление хлоролиза при высоких давлениях (до 20 МПа) и температурах (600 °С) позволяет перерабатывать в четыреххлористый углерод любые углеводороды и хлоруглеводороды, в том числе и ароматические. В процессе хлоролиза, разработанном фирмой "Hochst", образующийся хлорид водорода, выделяемый ректификацией под высоким давлением, имеет высокую степень чистоты и может быть направлен в процессы гидрохлорирования и оксихлорирования. Основные трудности при реализации и эксплуатации этого процесса связаны с довольно сложным аппаратурным оформлением технологической схемы и применением дорогостоящих конструкционных материалов. Все рассмотренные выше процессы переработки отходов связаны с образованием большого количества хлорида водорода, который можно использовать для процессов гидрохлорирования, оксихлорирования, а также для получения соляной кислоты. При переходе на метод окислительного хлорирования отходов сокращается потребление хлора и соответственно практически исключается образование хлорида водорода.
Наиболее интересна разработка сбалансированного процесса переработки отходов, включающего стадии прямого и окислительного хлорирования. На рис. 1.3 представлены варианты раздельного и совмещенного процессов прямого и окислительного хлорирования. Процесс прямого хлорирования ведут в объеме или псевдоожиженном слое кварцевого песка при температуре 500-600°С. Процесс оксихлорирования может осуществляться в псевдоожиженном или стационарном слое катализатора на основе хлорида меди при температуре 350-450°С. К достоинствам совмещенного процесса относится сокращение в 2-3 раза расхода хлора и отсутствие побочного НС1; к недостаткам - сгорание части отходов до оксидов углерода и более сложное аппаратурное оформление по сравнению с процессом прямого хлорирования. Предполагаемые расходные коэффициенты на 1 т отходов: хлора, т - 0,6-0,8 (в случае переработки отходов производства винилхлорида); электроэнергия, кДж - 6,47×105; пар, кДж - 2,1×106 - 8,37×106. В последнее время привлекают внимание технологов такие эффективные методы переработки отходов, как плазмохимический и электрокрекинг. Эти методы имеют степень превращения углеродного сырья в этилен и ацетилен и хлора в НС1, близкую к 100 %.
В плазмохимическом методе в качестве теплоносителя используется водород или его смесь с другими газами, нагретыми в электрической дуге до температуры, при которой молекулы и атомы ионизируются. В результате получается низкотемпературная плазма с температурой 3500-5000 К, которая смешивается с отходами. В процессе реакции происходит превращение углерода в непредельные соединения (этилен, ацетилен), метан, и технический углерод; хлора - в хлорид водорода, кислорода - в оксиды углерода, т. е. полученный газ является сырьем для синтеза хлорорганических продуктов. Варьируя состав сырья и режим пиролиза, можно изменять мольное отношение ацетилена и этилена в широких пределах: 0,5-4. Такой состав газов позволяет создавать технологию производства хлорорганических продуктов, сбалансированную по хлору без использования стадии оксихлорирования, и тем самым исключить образование побочного хлорида водорода и потери углеводорода и водорода.
Переработка хлорорганических отходов
Рис. 1.3.
а) получение перхлоруглеводородов прямым и окислительным хлорированием;
б) получение перхлоруглеводородов совмещением прямого и окислительного хлорирования.
При электрокрекинге, т. е. в условиях электрического разряда, создаваемого в жидких диэлектриках, каковыми являются большинство органических, в том числе и хлорорганических соединений, жидкие продукты разлагаются с получением крекинг-газа, содержащего до 30 % ацетилена, 8-10 % этилена и других олефинов, предельные углеводорода и хлорид водорода. Применяя высоковольтные и низковольтные источники питания, в определенных условиях можно добиться высокой стабильности электрической дуги и, следовательно, непрерывного процесса в течение длительного времени. Несомненным преимуществом процесса электрокрекинга в жидкой среде является доступность конструкционных материалов для изготовления основного агрегата, так как высокая температура (тысячи и десятки тысяч градусов) развивается в межэлектродном пространстве, а температура стенки равна температуре окружающей среды вне реактора.
Примером утилизации отходов методом электрокрекинга может быть процесс получения винилхлорида из легкой бензиновой фракции, сопровождающийся образованием органических отходов на стадии крекинга и хлорорганических на стадиях производства винилхлорида (из ацетилена и этилена через дихлорэтан). В этом случае может быть создано безотходное производство, полностью сбалансированное по углеродному и хлорному сырью. Главным недостатком плазмохимического метода переработки отходов и электрокрекинга по сравнению с более традиционными методами является высокий расход электроэнергии.
Приведенные выше примеры переработки отходов в товарные продукты или исходное углеводородное и хлорное сырье могут входить в состав разрабатываемых сбалансированных схем производств хлорорганических продуктов в самых различных вариантах, в зависимости от конкретных требований и специфики данного процесса.
0 комментариев