2. РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 Расчет припусков аналитически на две поверхности ø215N7, 120h12

Припуском называется слой металла, который нужно снять с обрабатываемой поверхности детали, для получения окончательного размера необходимого количества обрабатываемой поверхности.

Общий припуск- это слой материала снимаемый в течении всего процесса обработки данной поверхности, то есть от размера заготовки до размера готовой детали.

Операционный припуск- это слой металла снимаемый в процессе одной операции при обработки данной поверхности.

Расчет операционного припуска 120h12

Величину отклонения для проката определяют:

Последовательность обработки Элементы припуска

Zmin

в

(мкм)

Расчёт-ный размер в (мм) Допуск δ в (мм) Предельный размер в (мм)

Припуски

в (мкм)

Д max Д min Zmax Zmin
Rz Ta ρa Ey
Заготовка h14 50 50 60 - - 119,96 100 120,06 119,96 - -

Точение последо-вательное

h12

40 40 3,6 15 134 119,83 60 119,89 119,83 80 80

Точение последо-вательное

h12

40 40 0,18 15

 

82,7

119,75 60 119,81 119,75 200 160

1.Заносим в таблицу последовательность обработки рассматриваемой поверхности от заготовки до готовой детали.

2.Заносим в таблицу значение погрешности установки, которое выбираем по таблицам справочников.

3.Рассчитываем значение пространственных отклонений:

ρа= ∆k* L;

где ∆k – величина удельной деформации литых заготовок мкм/мм, принимается равным 0,5 мкм/мм;

L – общая длина заготовки;

ρа = 0,5* 120 = 60 мкм;

ρa´ = ρa* 0,06 = 60* 0,06 = 3,6 мкм;

ρa’´ = ρa* 0,05 = 3,6* 0,05 = 0,18 мкм

4.Определяем расчётные величины минимальных припусков Zbmin по всем технологическим переходам:

Zbmin=Rz+T+ρo·Eу= 40+40+3.6·15= 134мкм;

Zbmin= Rz+T+ρo·Eу = 40+40+0.18·15=82,7мкм;

5.Определяем расчётный размер:

120-0.25=119,75 мм;

119,75+82,7/ 1000 = 119,83 мм;

119,83+134/ 1000 = 119,96 мм;

6.Определяем максимальные предельные размеры, путём прибавления к расчётным размерам допусков:

119,75+60/1000=119,81 мм;

119,83+60/1000=119,89 мм;

119,96+60/1000=120,06 мм;

7. Определяем предельные припуски:

Z0max: (119,89-119,81)*1000=80 мкм;

(120,06-119,89)*1000=200мкм;

Z0min(119,83-119,75)*1000=80 мкм;

(119,96-119,83)*1000= 160 мкм;

8. Проверяем правильность расчётов:

Z0max - Z0min = δзаг - δдет

280-240= 100-60

40 =40

Расчет операционного припуска ø215N7

Последовательность обработки Элементы припуска

2Zmin

в

(мкм)

Расчётный размер в (мм) Допуск δ в (мм) Предельный размер в (мм)

Припуски

в (мкм)

Rz Ta ρa Ey

Д

max

Д

min

Zmax Zmin

Заготовка

H12

60 60 50 - - 215,496 100 215,496 215,396 - -

Точение черновое

H9

10 20 3 25 2*170 215,156 50 215,156 215,106 340 290
Точение чистовое H7 3 6 0,15 12,5 2*55,18 215,046 10 215,046 215,036 110 70

1. Заносим в таблицу последовательность обработки рассматриваемой поверхности от заготовки до готовой детали.

2. Заносим в таблицу значения погрешности установки

Ey = 100 мкм; Ey = 6 мкм, которые выбираем по таблицам справочников.

3. Рассчитываем значение пространственных отклонений:

ρа= ∆k* L; где

k – величина удельной деформации литых заготовок мкм/мм, принимается равным 0,5 мкм/мм;

L – общая длина заготовки;

ρа = 0,5* 100 = 50 мкм;

ρa´ = ρa* 0,06 = 50* 0,06 = 3мкм;

ρa’´ = ρa* 0,05 = 3* 0,05 = 0.15 мкм

εу =0,25*100=25

εу =0,25*50=12,5

4. Определяем расчётные величины минимальных припусков 2Zbmin по всем технологическим переходам:

2Zbmin = 2* (Tai-1+ Rzi-1+ )

2Z´bmin = 2* (60+ 60+ = 2* 170 мкм;

2Z´´bmin = 2* (10+ 20+ ) = 2* 558,87 мкм.


5. Определяем расчётный размер:

215+0,046= 215,046 мм

6. Определяем максимальные предельные размеры, путём прибавления к расчётным размерам допусков:

215,046+2*55,18/1000 = 215,156мм;

215,156+2*170/1000=215,496мм;

Дminmax

Дmin=215,496-0,1=215,396

Дmin=215,156-0,05=215,106

Дmin=215,046-0,01=215,036

7. Определяем предельные припуски:

Zmax=Дmaxί-1 –Дmaxί

Z0max: (215,046-215,156)*1000 = 110мкм;

(215,156-215,496)*1000 = 340 мкм;

Z0min: (215,106-215,036)*1000 = 70 мкм;

(215,396-215,106)*1000 = 290 мкм;

8. Проверяем правильность расчётов:

Z0max - Z0min = δз- δд

450-360=100-10

90 = 90


2.2 Расчет режимов резания на две операции, на остальные операции - табличные значения

 

Автоматно-токарная по формулам

015 точить торец выдерживая размер ø300Н11

Инструмент – резец токарный проходной упорный правый с пластиной из твердого сплава Т15К6 по ГОСТ18879 – 73

t=1мм, S=0,035мм/об, n=1000мин-1

CV=420, T=40мин, х=0,15, у=0,20, m=0,20

KV=KMVKИVKПV=1*1,2*1,09=1,316

Vт= Сv×Kv/(Tm tx Sy)

Vт==313,54 м/мин

Pz,y,x=10×Cp×tx×sy×Vn×Kр

Kр= Kмр×Kφр×Kγр ×Krр

Принимаем по паспорту станка n=300об/мин

Определяем минутную подачу

Определяем действительную подачу на зуб

Определяем силу резания


Pz:Cp=200, x=1, y=0,75, n= 0

Kр= 0,62×1,8×1,0 ×1,04×1,04=1,20

Pz =10×200×1×0,8×1×1,2=518 Н

Определяем крутящий момент

Определяем мощность резания

Обработка возможна

Определяем основное время

Точить Ø300 и отверстие Ø215+0,021 мм на 1 проход одновременно.

Подача S=Sm= 0,6

t = 1мм

Т =Tтабл= 125 мин

Скорость резания:


V=Vтабл*К1*К2*К3=120*0,6*1,25*1,35=121,5м/мин

К1=0,6

К2=1,25

К3=1,35

Принимаем по паспорту станка nд = 400

N – мощность резания.

 Pz = Pz табл*К1*К2=135*1,15*1,1=170,775

 

, где

y – величина перехода инструмента;

l – длина точения;

y1 – длина перебега;

n – частота вращения шпинделя;

S – минутная подача;

i – количество переходов;

y = 2 – 3 мм,

y1 = 2 – 3 мм,

l = D/2 =

Точить канавку Ø 257 мм.

Подача S=Sm= 0,6

t = 3мм

Т =Tтабл= 100 мин

Скорость резания:

V=Vтабл*К1*К2*К3=137*0,6*1,25*1,35=37,46м/мин

К1=0,6

К2=1,25

К3=1,35

Принимаем по паспорту станка nд = 500

N – мощность резания.

 Pz = Pz табл=135

 

, где

y – величина перехода инструмента;

l – длина точения;

y1 – длина перебега;

n – частота вращения шпинделя;

S – минутная подача;

i – количество переходов;

y = 2 – 3 мм,

y1 = 2 – 3 мм,

l = D/2 =

Точить фаску 2×45°.

Глубина резания: t=0,5 мм

Подача: S=Sm=31 мм/об

Скорость резания: V=Vm=31 м/мин

Частота вращения: n=1000*V/π*D=1000*31/π*215=2122,6 об/мин

принимаем n=2250 об/мин

Мощность резания: Nр=Nm=2,8 кВт

Основное время: То=L/n*Sm*i=215/2250*0,12*1=0,01 мин

Точить фаску 10 о

Подача S=Sm= 0,6

t = 0,4мм

Т =Tтабл= 160 мин

Скорость резания:

V=Vтабл123=42*0,6*1,25*1,35=42,5м/мин

К1=0,6

К2=1,25

К3=1,35

Принимаем по паспорту станка nд = 400

N – мощность резания.

 Pz = Pz табл12=100*1,3*1,2=156

 

, где

y – величина перехода инструмента;

l – длина точения;

y1 – длина перебега;

n – частота вращения шпинделя;

S – минутная подача;

i – количество переходов;

y = 2 – 3 мм,

y1 = 2 – 3 мм,

l = D/2 =

Отрезать заготовку, выдерживая размер ø300Н11

t=0,8мм

Принимаем по паспорту станка S=0,24мм/об

Определяем число оборотов

Принимаем по паспорту станка


Определяем мощность резания

Обработка возможна

Определяем основное время

 


Информация о работе «Разработка технологического процесса механической обработки заготовки "Ролик"»
Раздел: Промышленность, производство
Количество знаков с пробелами: 39503
Количество таблиц: 4
Количество изображений: 3

Похожие работы

Скачать
30311
4
4

... для разработки проекта, являются: - Наименование детали – лапа; - Материал детали – 20ХН3А-Ш; - Чистый вес детали – 61 кг.; - Продолжительность рабочей смены – 8 часов; - Задание на проектирование – модернизация технологического процесса механической обработки лапы. Таблица 1 Химический состав стали 20ХН3А-Ш С Cr Ni S не более P не более 0,17-0,22 0,60-0,90  2,75-3,15 0,015 0, ...

Скачать
129923
32
5

... Исходя из выше перечисленных пунктов соответствия данной сборочной единицы всем нормам технологичности, делаем вывод о том, что конструкция рассматриваемого вала первичного в сборе является технологичной. 3.3 Разработка технологического процесса сборки Таблица 2 - Технологический маршрут сборки № операции Содержание перехода 1. На вал 1 установить стакан 17 2. Напрессовываем на вал 1 ...

Скачать
121280
17
0

... перемещения луча приведено на рис. 1.5. Наблюдаемые различия в структуре и твёрдости слоёв зоны в стали 35, обрабатываемой непрерывным излучением лазера на СО2, объясняют различными условиями их нагрева и охлаждения. 1.6. Упрочнение кулачка главного вала В течение последних трёх – пяти лет появились мощные газовые лазеры, обеспечивающие в режиме непрерывной генерации мощность порядка ...

Скачать
164909
49
264

... выпусков изделий изготовление их ведется путем непрерывного выполнения на рабочих местах одних и тех же постоянно повторяющихся операций. Определим тип производства при изготовлении детали "картер" массой 6 кг. При разработке новых технологических процессов, когда технологический маршрут механической обработки детали не определен, используют коэффициент серийности , (3.5.1) где tв - такт выпуска ...

0 комментариев


Наверх