3. Расчет шевронной передачи
Исходные данные:
Мощность на валу шестерни и колеса Р1=7,06 кВт
Р1=6,78 кВт
Вращающий момент на шестерне и колесе Т1=388 Нм
Т2=1964 Нм
Передаточное число U=4,5
Частота вращения шестерни и колеса n1=174 об/мин
n2=38,7 об/мин
Угловая скорость вращения шестерни и колеса ω1=18,2 рад/с
ω3=4 рад/с
Угол наклона зубьев β=45˚
Расположение колес относительно опор симметричное.
Материал зубчатых колес сталь 45 с термообработкой – улучшение; для колеса твердость 235…262 НВ2 (248 НВ2ср), sТ = 540 Н/мм2, наибольшая толщина сечения заготовки ; для шестерни 269…302 НВ1 (285 НВ1ср), sТ = 650 Н/мм2, при диаметре заготовки шестерни .
При этом обеспечивается прирабатываемость зубьев: .
Интерполированием, т.е. находим промежуточные значения функции по известным ее частным значениям, [1,табл.4.15] находим число циклов напряжений, соответствующее пределу выносливости:
для колеса – NHO2 = 16,2´106,
для шестерни – NHO1 = 22,5´106 .
Рекомендуется NF0 = 4´106 – наработка.
Находим число циклов нагружения зубьев (колеса и шестерни) за весь срок службы:
;
;
;
;
где - ресурс (срок службы) передачи, примерно три года при двухсменной работе.
Принимаем значения коэффициентов:
KHL = 1, учитывает влияние срока службы и режима нагрузки передачи,
KFL = 1, учитывает долговечность работы.
Определяем допускаемые контактные напряжения [s]HO и напряжения изгиба [s]FO, соответствующие числу циклов напряжений NHO и NFO [3, табл. 4.6] для материалов зубьев колеса и шестерни:
;
;
;
;
;
;
Определяем допускаемые напряжения с учетом ресурса (срока службы) передачи:
;
;
;
;
;
;
Чтобы рассчитать межосевое расстояние, принимаем расчетные коэффициенты: – коэффициент ширины венца [1,табл. 4.6], , – коэффициент неравномерности нагрузки по длине зуба (табл. 4.18; 4.20).
Тогда межосевое расстояние передачи равно:
где Ка =43 – числовой коэффициент для шевронной передачи;
Т2=232Нм.
Подставив значения в формулу (5.1) получим:
; мм;
Принимаем окончательно по ГОСТ2185-66 [1,c.36]
мм.
Определяем модуль [1,c.36]:
;
;
Принимаем по ГОСТ9563-60 модуль mn=4,0мм [1,c.36]
Определяем суммарное число зубьев по формуле:
β=45º, тогда cosβ=0,707
; ;
Принимаем зуба.
Определяем число зубьев шестерни и колеса по формулам [1,c.37]:
;
;
;
; .
Уточняем фактическое передаточное число
;
;
Отклонения передаточного числа от номинального нет.
Определяем делительные диаметры шестерни и колеса по формуле (3.11):
; мм;
; мм.
Проверяем межосевое расстояние
; мм.
Определяем остальные геометрические параметры шестерни и колеса по формулам (2.10)
; ;
; ; ;
мм;
; мм;
; мм;
; мм;
; мм; принимаем b2=80мм;
; мм;
; мм
; мм;
; мм;
; мм.
Проверяем соблюдение условия (т.к. Ψba<0,4)
;
; ;
0,315>0,056
Значит, условие выполняется.
Определяем окружные скорости колес
; м/с;
;
; м/с;
Принимаем для расчетов м/с.
Определяем силы в зацеплении
- окружная
; ; Н;
- радиальная
; ; Н;
- осевого усилия нет.
Принимаем 9-ую степень точности изготовления колес [1,табл.4.5].
Принимаем коэффициенты динамической нагрузки: KHV=1,2 (Н≤350HB); КFV=1,02 [1,табл. 4.13]. Принимаем коэффициенты формы зуба некорригированного зацепления: для шестерни z1 = 16, YF1 = 4,4; а для колеса z2 = 72, YF2 = 3,61. Проверяем зубья колеса по контактным напряжениям и по напряжениям изгиба:
Расчетное контактное напряжение:
;
;
Определяем ∆σН
;
; недогрузки, что допускается.
Расчетные напряжения изгиба в основании ножки зубьев колеса и шестерни:
;
;
;
;
Прочность зубьев на изгиб обеспечивается
Все вычисленные параметры заносим в табл.3.
Параметры закрытой шевронной передачи Таблица 3
Параметр | Шестерня | Колесо |
mn,мм | 4 | |
z | 16 | 72 |
βº | 45º | |
ha,мм | 4 | |
hf,мм | 5 | |
h,мм | 10 | |
с, мм | 0,5 | |
d,мм | 90,5 | 409,5 |
dа,мм | 98,5 | 422,5 |
df,мм | 80,5 | 399,6 |
b, мм | 80 | 62 |
ω, рад | 18,2 | 4 |
аW,мм | 250 | |
v, м/с | 0,8 | |
Т, Нм | 388 | 1964 |
Ft, Н | 9593 | |
Fr, Н | 4938 |
... эксплуатации канавки шкивов подвергаются усиленному износу. Для восстановления нормальной формы ручья производят периодическую проточку шкивов. Для удобства ремонта и замены обод шкива может быть съемным. 2. Расчет механизма подъема монтажного крана 2.1 Выбор каната рис.10. схема запасовки монтажного каната Îïðåäåëèì ìàê ...
... в заделке (точка В) и момента в точке приложения нагрузки от канатной подвески (точка Е) (2.5) В реальных конструкциях лифтов величина Км ≥ 10, поэтому доля влияния моментов в узлах соединения балок со стойками очень мала, что делает вполне оправданным упрощенный расчет балок и стоек каркаса. 2.1.3 Устройство и расчет пола кабины Горизонтальная рама каркаса ...
... соединения с двигателем в случае индивидуального привода ротора. Подшипники смазываются через тавотницы 2 и 5. Рисунок 2.2 Вал привода ротора в сборе 2. Расчетная часть 2.1 Расчет и выбор параметров буровой лебедки К основным параметрам буровых лебедок относятся мощность, скорости подъема, тяговое усилие, длина и диаметр барабана лебедки. От правильного выбора указанных параметров ...
... значение Тпик не задано, его определяют по формуле Тпик = КТmах, где К— коэффициент внешней динамической нагрузки, принемаемый равным 1,5…2,5. Аналогично, максимальные напряжения изгиба 5. Проектирование тихоходного вала редуктора. 5.1. Предварительный расчет Выполняется из условия расчета на кручение по заниженным допускаемым напряжениям кручения [] кр = 12…20 МПа, т.е. без учета ...
0 комментариев