7. Выбор материала и термообработки зубчатых передач
Практикой эксплуатации и специальными исследованиями установлено, что нагрузка, допускаемая при контактной прочности зубьев, определяется в основном твердостью материала. Высокую твердость в сочетании с другими характеристиками, а следовательно, малые габариты и массу передачи можно получить при изготовлении зубчатых передач из сталей, подвергнутых термообработке.
Для шестерни тихоходной ступени выберем марку стали 45 с твердостью 241….285 НВ и термообработку – улучшение. Для колеса выберем марку стали 45 с твердостью 192…240 НВ и термообработку – улучшение.
Для тихоходной ступени назначим твердость для шестерни 270 НВ и для колеса 230 НВ [3].
Для шестерни быстроходной ступени выберем марку стали 45 с твердостью 241….285 НВ и термообработку – улучшение. Для колеса выберем марку стали 45 с твердостью 192…240 НВ и термообработку – улучшение.
Для быстроходной ступени назначим твердость для шестерни 270 НВ и для колеса 230 НВ [3].
7.1. Допускаемые контактные напряжения
Допускаемые контактные напряжения рассчитаем по формуле:
[σН]1 + [σН]2
[σН] =,
2
где [σН]1 – допускаемые контактные напряжения для шестерни тихоходной ступени;
[σН]2 - допускаемые контактные напряжения для колеса тихоходной ступени;
[σН]1 = σНlim1*zN1/sN1;
[σН]2 = σНlim2*zN2/sN2;
Рассчитаем пределы выносливости для шестерни и колеса [3]:
σНlim1 = 2*HB + 70 = 2*270 + 70 = 610 МПа;
σНlim2 = 2*HB + 70 = 2*230 + 70 = 530 МПа;
Коэффициенты долговечности определим по формуле [3]:
zN = √NHG/NHE,
где NHG – базовое число циклов нагружения;
NHE – циклическая долговечность;
По графику определим [3]:
NHG1 = 11*10
NHG2 = 10*10
Циклическую долговечность определим по формуле [3]:
NHE = μН* Nк = μН*60*с*п*LH,
Где с – число зацеплений зуба за один оборот колеса;
п – частота вращения;
LH – длительность работы (ресурс);
μН – коэффициент эквивалентности. Для заданного режима работы 2 определяем, что μН = 0,25;
Получим:
NHE1 = 0,25*60*1*296,4*18000 = 80*10;
NHE2 = 0,25*60*1*75,8*18000 = 20,47*10;
Рассчитаем коэффициент долговечности:
zN1 = √NHG1/NHE1 = 11*10 /80*10 = 0,72;
zN2 = √NHG2/NHE2 = 10*10 /20,47*10 = 0,89;
т.к. найденные числовые значения коэффициентов долговечности не удовлетворяют условию 1 ≤ zN ≤ 2,4 [3]. То для колеса и шестерни принимаем zN = 1.
Значение коэффициента надежности примем равным SH = 1,1.
Допускаемые контактные напряжения на колесе и на шестерне:
[σН]1 = 610*1/1,1 = 554 МПа;
[σН]2 = 530*1/1,1 = 481 МПа;
Допускаемое контактное напряжение:
554 + 481
[σН] = = 518 МПа.
2
7.2. Допускаемые изгибные напряжения
Допускаемое изгибное напряжение определим по формуле [3]:
[σF] = σFlim*KFC*KFL/SF,
где σFlim – предел выносливости зубьев по напряжениям изгиба, МПа;
KFC – коэффициент, учитывающий влияние двустороннего приложения нагрузки (при односторонней нагрузке KFC=1;
KFL – коэффициент долговечности;
SF – коэффициент безопасности;
Рассчитаем пределы выносливости для шестерни и колеса [3]:
σFlim1 = 1,8*НВ = 1,8*270 = 486 МПа;
σFlim2 = 1,8*НВ = 1,8*230 = 414 МПа;
Принимаем значение коэффициентов безопасности для шестерни и колеса SF = 1,75 [3];
Коэффициент долговечности определим по формуле [3]:
KFL = √NFG/NFE,
где NFG = 4*10 - базовое число циклов;
NFE – эквивалентное число циклов;
Эквивалентное число циклов определим по формуле:
NFE1 = μFE*Nк1 = μFE*60*с*п*LH = 0,14*60*1*296,3*18000 = 44,8*10;
NFE2 = μFE *Nк2 = μFE*60*с*п*LH = 0,14*60*1*75,8*18000 = 11,46*10;
где μFE – коэффициент эквивалентности;
Nк – расчетное значение циклов;
Получим:
KFL1 = √4*10 /44,8*10 = 0,668;
KFL2 = √ 4*10 /11,46*10 = 0,839;
Полученные значения коэффициентов долговечности не удовлетворяют условию 1 ≤ KFL ≤ 2 [3], тогда для колеса и шестерни принимаем KFL=1.
Допускаемые изгибные напряжения равны:
[σF]1 = 486*1*1/1,75 = 278 МПа;
[σF]2 = 414*1*1/1,75 = 237 МПа.
8. Определение расчетного контактного напряжения в полюсе зацепления зубчатой пары для тихоходной ступени
Значение расчетных контактных напряжений одинаковы для шестерни и колеса, поэтому расчет выполняем только для шестерни.
Расчет прочности зубьев по контактным напряжениям для прямозубой передачи внешнего зацепления произведем по формуле [3]:
Т1Тш*kH*ЕПр (и + 1)
σН = 1,18* √ * ≤ [σН],
d1²*вw*sin 2αw и
где Т1Тш – вращающий момент на шестерне тихоходной ступени;
kH – коэффициент нагрузки по контактным напряжениям;
ЕПр = 2*10 МПа – модуль упругости для стали;
d1 = 55 мм – диаметр шестерни;
вw = 50,9 мм – ширина венца шестерни;
αw=20º - угол зацепления;
и = 3,91 – передаточное отношение тихоходной ступени.
Коэффициент нагрузки определяем по формуле:
kH = kHβ* kHV,
где kHβ = 1,02 – коэффициент концентрации нагрузки (при ψвd = в/d= = 0,93) [3];
kHV = 1,03 – динамический коэффициент (при υ= π*d*п/30 =
= π*d*Пб*иозп*и/30 = 1,68 м/с);
Тогда:
kH = 1,02*1,03 = 1,0506;
Получаем расчетное контактное напряжение равно:
64,02*10 ³*1,0506*2*10 (3,91 + 1)
σН = 1,18*√ * = 488 МПа;
... число клиноременной передачи отличается от принятого. В связи с этим пересчитаем кинематические параметры редуктора табл. 3.1. Таблица 3.1 – Уточненные кинематические параметры приводной станции Показатель Обозначение Ед. измер. Значение Передаточное число клиноременной передачи u - 2,53 редуктора uред - 7,00 первой ступени u1 - 2,65 второй ступени u2 - 2,64 ...
... Uред.ст = 5,6. Уточним полученное значение передаточного отношения клиноременной передачи: Uкл.рем.ст. = Uпр / Uред.ст. = 10,8 / 5,6 = 1,93 Определим значения мощности на каждом из валов привода конвейера. Мощность на выходном валу электродвигателя (кВт) определяется по формуле (9). Ртреб.эл. = Ррем1 = 8,87 кВт (9) Мощность на входном валу ...
приводной станции: Частоты вращений, об/мин: Мощности, кВт: Вращающее моменты, Нм: 2. РАСЧЕТ ЦЕПНОЙ ПЕРЕДАЧИ Исходные данные: Мощность на ведущей звездочке Вт Частота вращения ведущей звездочки мин-1 Передаточное число передачи Режим работы передачи - ВТ Угол наклона передачи к горизонту Срок службы передачи часов Расчет: Выбираем тип цепи из наиболее ...
... (от передвижения источников загрязнения) 1180,48 Всего за год: 211845,25 10. Совершенствование системы электроснабжения подземных потребителей шахты Расчет схемы электроснабжения ЦПП до участка и выбор фазокомпенсирующих устройств Основными задачами эксплуатации современных систем электроснабжения горных предприятий являются правильное определение электриче ...
0 комментариев