55 ²*50,9*sin40º 3,91

Следовательно, условие прочности по контактным напряжениям выполняется, т.к.:

σН = 488 МПа < [σН] = 518 МПа.


9.         Определение расчетного изгибного напряжения

Расчет прочности зубьев по изгибным напряжениям произведем по формуле [3]:

σF = УFs*Ft*kF/вw*т,

где УFs – коэффициент формы зуба;

Ft – окружная сила, Н;

kF – коэффициент нагрузки по изгибным напряжениям;

Для шестерни УFs = 4,08 (при z=22 и х=0), для колеса УFs = 3,73 (при z=86 и х=0) [3].

Окружная сила для шестерни Ft = 2,328 кН, для колеса Ft = 2,259 кН.

Рассчитаем коэффициенты нагрузки по изгибным напряжениям для шестерни и колеса [3]:

kF = kFβ* kFV,

где kFβ1 = 1,05 и kFβ2 = 1 – коэффициенты концентрации нагрузки для шестерни и колеса (при ψвd1 = в/d= = 0,93 и ψвd2 = в/d= = 0,24) [3];

kHV = 1,02 – динамический коэффициент (при υ= π*d*п/30 =

= π*d*Пб*иозп*и/30 = 1,68 м/с);

Тогда:

kF1 = 1,05*1,02 = 1,071;

kF2 = 1*1,02 = 1,02;

Получаем расчетные контактные напряжения равны:

σF1 = 4,08*2,328*10 ³*1,071/50,9*2,5 = 80 МПа;

σF2 = 3,73*2,259*10 ³*1,02/50,9*2,5 = 68 МПа;

Следовательно, условие прочности по изгибным напряжениям выполняется, т.к.:

σF1 = 80 МПа < [σF]1 = 278 МПа;

σF2 = 68 МПа < [σF]2 = 237 МПа.

10.      Определение размеров валов зубчатых колес и выбор подшипников

Диаметры различных участков валов редуктора определим по формулам [2]:

быстроходный вал

d ≥ (7…8) ³√T1Б = (7…8) ³√6,93 = (13,3…15,25) = 15 мм;

dП ≥ d +2*t,

где t = 2 – высота буртика [2];

Получим:

dП ≥ 15 + 2*2 = 19 мм;

Принимаем dП = 20 мм;

dБП ≥ dп +3*r,

где r = 1,6 – координата фаски подшипника;

Получим:

dБП ≥ 20 + 3*1,6 = 24,8 мм;

диаметр dБП округляем в ближайшую сторону до стандартного значения dБП = 24 мм.

промежуточный вал

dк ≥ (6…7) ³√T1тш = (6…7) ³√64,02 = (24…28) = 25 мм;

dБК ≥ dк +3*f,

где f = 1 – размер фаски [2];

Получим:

dБК ≥ 25 + 3*1 = 28 мм;

dП = dк – 3*r = 25 – 3*1,6 = 20,2 мм;

диаметр dП округляем в ближайшую сторону до стандартного значения

dП = 20 мм;

dБп ≥ dП +3*r = 20 +3*1,6 = 24,8 мм;

диаметр dБП округляем в ближайшую сторону до стандартного значения

dБП = 24 мм.

Тихоходный вал

d ≥ (5…6) ³√T2тк = (5…6) ³√242,82 = (31,5…37,8) = 36 мм;

dП ≥ d +2*t = 36 + 2*2 = 40 мм;

dБп ≥ dП +3*r = 40 + 3*1,6 = 44,8 мм;

диаметр dБП округляем в ближайшую сторону до стандартного значения

dБП = 42 мм;

dк = dБП = 42 мм.

рис.5 Валы редуктора


Для быстроходного вала выбираем роликовые радиальные подшипники с короткими цилиндрическими роликами тип 2000: d = 20 мм, D = 47 мм, В = 14 мм, r = 1,5 мм и грузоподъемность С = 11,9 кН;

Для тихоходного вала выбираем шариковые радиальные однорядные подшипники 208 легкой серии: d = 40 мм, D = 80 мм, В = 18 мм, r = 2 мм и грузоподъемность С = 25,6 кН;

Для промежуточного вала выбираем шариковые радиальные однорядные подшипники 304 легкой серии: d = 20 мм, D = 47 мм, В = 14 мм,

r = 1,5 мм и грузоподъемность С = 10 кН.

11.


Расчет подшипников промежуточного вала на грузоподъемность

Рассмотрим промежуточный вал, а также действующие на него нагрузки:

рис. 6 действующие нагрузки на промежуточный вал

Определим реакции, возникающие в подшипниках от усилий Ft2Б и Ft1т в плоскости ОУZ:

Ra1 = RB1 = ∑ Ft/2 = -2*Ft2б + Ft1т /2 = -2*0,488 + 2,328/2 = 0,676 кН;

Определим реакции, возникающие в подшипниках от усилий Fr2Б и Fr1т в плоскости ОXZ:

Ra2 = RB2 = ∑ Fr/2 = -2*Fr2б + Fr1т /2 = -2*0,204 + 0,847 /2 = 0,2195 кН;

Реакции в подшипниках от усилий:

Ra = RB = √ Ra1 ² + Ra2 ² = √0,676 ² + 0,2195 ² = 0,711 кН.


Определим радиальную нагрузку, действующую на подшипник [3]:

Р = Х*V* Ra*kσ*kт,

Где Х=1 – коэффициент радиальной нагрузки;

V=1 – коэффициент вращения;

Kσ=1,3…1,5 – коэффициент безопасности, учитывающий характер нагрузки: умеренные толчки;

Kт=1 – температурный коэффициент.

Получим:

Р = 1*1*0,711*1,4*1 = 0,995 кН;

Определим долговечность работы по формуле [3]:

р

L = а1* а2*(С/р) *10 /60*п,

где С = 10 кН – паспортная динамическая грузоподъемность;

Р = 0,995 кН – эквивалентная нагрузка;

р = 3 – для шариковых подшипников;

а1 = 1 – коэффициент надежности;

а2 = 0,75 – обобщенный коэффициент совместного влияния качества металла и условий эксплуатации;

получим:

L = 1*0,75*(10/0,995) ³*10 /60*296,3 = 42826 ч;

Необходимо соблюдение условия:


L > Lhe = Lh*μ = 18000*0,25 = 4500 ч;

42826 ч > 4500 ч.


12.      Расчет промежуточного вала на прочность

Определим расстояния между сечениями вала:

а = 31 мм;

b = 38 мм;

Построим эпюры изгибающих моментов в вертикальной плоскости (рис. 7):

1. М(z) = Ra1*z, при 0 < z < a;

М(0) = Ra1*0 = 0;

М(а) = Ra1*а = 676*0,031 = 20,96 Н*м;

2. М(z) = Ra1*(а + z) + Ft2б*z, при а < z < (a + b);

М(0) = Ra1*а = 676*0,031 = 20,96 Н*м;

М(b) = Ra1*(а + b) + Ft2б*b = 676*(0,031 + 0,038) + 488*0,038 = 65,2 Н*м;

3. М(z) = Ra1*(а + b + z) + Ft2б*(b + z) - Ft1т*z, при (а + b) < z < (a + b + b);

М(0) = Ra1*(а + b) + Ft2б*b = 676*(0,031 + 0,038) + 488*0,038 = 65,2 Н*м;

М(z) = Ra1*(а + b + b) + Ft2б*(b + b) - Ft1т*b = 676*(0,031 + 0,038 + 0,038) +

+ 488*(0,038 + 0,038) - 2328*0,038 = 20,96 Н*м;

4. М(z) = RB1*z, при 0 < z < a;

М(0) = RB1*0 = 0;

М(а) = RB1*а = 676*0,031 = 20,96 Н*м;


Построим эпюры изгибающих моментов в горизонтальной плоскости (рис. 7):

1. М(y) = Ra2*y, при 0 < y < a;

М(0) = Ra2*0 = 0;

М(а) = Ra2*а = 219,5*0,031 = 6,8 Н*м;

2. М(y) = Ra2*(а + y) + Fr2б*y, при а < y < (a + b);

М(0) = Ra2*а = 219,5*0,031 = 6,8 Н*м;

М(b) = Ra2*(а + b) + Fr2б*b = 219,8*(0,031 + 0,038) + 204*0,038 = 22,9 Н*м;

3. М(y) = Ra2*(а + b + y) + Fr2б*(b + y) - Fr1т*y, при (а + b) < y < (a + b + b);

М(0) = Ra2*(а + b) + Fr2б*b = 219,8*(0,031 + 0,038) +204*0,038 = 22,9Н*м;

М(a) = Ra2*(а + b + b) + Fr2б*(b + b) - Fr1т*b = 219,5*(0,031 + 0,038 + 0,038) + 204*(0,038 + 0,038) - 847*0,038 = 6,8 Н*м;


Информация о работе «Расчет и проектирование приводной станции»
Раздел: Промышленность, производство
Количество знаков с пробелами: 33759
Количество таблиц: 6
Количество изображений: 22

Похожие работы

Скачать
36466
6
6

... число клиноременной передачи отличается от принятого. В связи с этим пересчитаем кинематические параметры редуктора табл. 3.1. Таблица 3.1 – Уточненные кинематические параметры приводной станции Показатель Обозначение Ед. измер. Значение Передаточное число клиноременной передачи u - 2,53 редуктора uред - 7,00 первой ступени u1 - 2,65 второй ступени u2 - 2,64 ...

Скачать
15486
6
2

... Uред.ст = 5,6. Уточним полученное значение передаточного отношения клиноременной передачи: Uкл.рем.ст. = Uпр / Uред.ст. = 10,8 / 5,6 = 1,93 Определим значения мощности на каждом из валов привода конвейера. Мощность на выходном валу электродвигателя (кВт) определяется по формуле (9). Ртреб.эл. = Ррем1 = 8,87 кВт (9)   Мощность на входном валу ...

Скачать
15231
0
34

приводной станции: Частоты вращений, об/мин:   Мощности, кВт:   Вращающее моменты, Нм: 2. РАСЧЕТ ЦЕПНОЙ ПЕРЕДАЧИ   Исходные данные: Мощность на ведущей звездочке Вт Частота вращения ведущей звездочки мин-1 Передаточное число передачи Режим работы передачи - ВТ Угол наклона передачи к горизонту Срок службы передачи часов Расчет: Выбираем тип цепи из наиболее ...

Скачать
179075
32
127

... (от передвижения источников загрязнения) 1180,48 Всего за год: 211845,25 10. Совершенствование системы электроснабжения подземных потребителей шахты Расчет схемы электроснабжения ЦПП до участка и выбор фазокомпенсирующих устройств Основными задачами эксплуатации современных систем электроснабжения горных предприятий являются правильное определение электриче­ ...

0 комментариев


Наверх