55 ²*50,9*sin40º 3,91
Следовательно, условие прочности по контактным напряжениям выполняется, т.к.:
σН = 488 МПа < [σН] = 518 МПа.
9. Определение расчетного изгибного напряжения
Расчет прочности зубьев по изгибным напряжениям произведем по формуле [3]:
σF = УFs*Ft*kF/вw*т,
где УFs – коэффициент формы зуба;
Ft – окружная сила, Н;
kF – коэффициент нагрузки по изгибным напряжениям;
Для шестерни УFs = 4,08 (при z=22 и х=0), для колеса УFs = 3,73 (при z=86 и х=0) [3].
Окружная сила для шестерни Ft = 2,328 кН, для колеса Ft = 2,259 кН.
Рассчитаем коэффициенты нагрузки по изгибным напряжениям для шестерни и колеса [3]:
kF = kFβ* kFV,
где kFβ1 = 1,05 и kFβ2 = 1 – коэффициенты концентрации нагрузки для шестерни и колеса (при ψвd1 = в/d= = 0,93 и ψвd2 = в/d= = 0,24) [3];
kHV = 1,02 – динамический коэффициент (при υ= π*d*п/30 =
= π*d*Пб*иозп*и/30 = 1,68 м/с);
Тогда:
kF1 = 1,05*1,02 = 1,071;
kF2 = 1*1,02 = 1,02;
Получаем расчетные контактные напряжения равны:
σF1 = 4,08*2,328*10 ³*1,071/50,9*2,5 = 80 МПа;
σF2 = 3,73*2,259*10 ³*1,02/50,9*2,5 = 68 МПа;
Следовательно, условие прочности по изгибным напряжениям выполняется, т.к.:
σF1 = 80 МПа < [σF]1 = 278 МПа;
σF2 = 68 МПа < [σF]2 = 237 МПа.
10. Определение размеров валов зубчатых колес и выбор подшипников
Диаметры различных участков валов редуктора определим по формулам [2]:
быстроходный вал
d ≥ (7…8) ³√T1Б = (7…8) ³√6,93 = (13,3…15,25) = 15 мм;
dП ≥ d +2*t,
где t = 2 – высота буртика [2];
Получим:
dП ≥ 15 + 2*2 = 19 мм;
Принимаем dП = 20 мм;
dБП ≥ dп +3*r,
где r = 1,6 – координата фаски подшипника;
Получим:
dБП ≥ 20 + 3*1,6 = 24,8 мм;
диаметр dБП округляем в ближайшую сторону до стандартного значения dБП = 24 мм.
промежуточный вал
dк ≥ (6…7) ³√T1тш = (6…7) ³√64,02 = (24…28) = 25 мм;
dБК ≥ dк +3*f,
где f = 1 – размер фаски [2];
Получим:
dБК ≥ 25 + 3*1 = 28 мм;
dП = dк – 3*r = 25 – 3*1,6 = 20,2 мм;
диаметр dП округляем в ближайшую сторону до стандартного значения
dП = 20 мм;
dБп ≥ dП +3*r = 20 +3*1,6 = 24,8 мм;
диаметр dБП округляем в ближайшую сторону до стандартного значения
dБП = 24 мм.
Тихоходный вал
d ≥ (5…6) ³√T2тк = (5…6) ³√242,82 = (31,5…37,8) = 36 мм;
dП ≥ d +2*t = 36 + 2*2 = 40 мм;
dБп ≥ dП +3*r = 40 + 3*1,6 = 44,8 мм;
диаметр dБП округляем в ближайшую сторону до стандартного значения
dБП = 42 мм;
dк = dБП = 42 мм.
рис.5 Валы редуктора
Для быстроходного вала выбираем роликовые радиальные подшипники с короткими цилиндрическими роликами тип 2000: d = 20 мм, D = 47 мм, В = 14 мм, r = 1,5 мм и грузоподъемность С = 11,9 кН;
Для тихоходного вала выбираем шариковые радиальные однорядные подшипники 208 легкой серии: d = 40 мм, D = 80 мм, В = 18 мм, r = 2 мм и грузоподъемность С = 25,6 кН;
Для промежуточного вала выбираем шариковые радиальные однорядные подшипники 304 легкой серии: d = 20 мм, D = 47 мм, В = 14 мм,
r = 1,5 мм и грузоподъемность С = 10 кН.
11.
Расчет подшипников промежуточного вала на грузоподъемность
Рассмотрим промежуточный вал, а также действующие на него нагрузки:
рис. 6 действующие нагрузки на промежуточный вал
Определим реакции, возникающие в подшипниках от усилий Ft2Б и Ft1т в плоскости ОУZ:
Ra1 = RB1 = ∑ Ft/2 = -2*Ft2б + Ft1т /2 = -2*0,488 + 2,328/2 = 0,676 кН;
Определим реакции, возникающие в подшипниках от усилий Fr2Б и Fr1т в плоскости ОXZ:
Ra2 = RB2 = ∑ Fr/2 = -2*Fr2б + Fr1т /2 = -2*0,204 + 0,847 /2 = 0,2195 кН;
Реакции в подшипниках от усилий:
Ra = RB = √ Ra1 ² + Ra2 ² = √0,676 ² + 0,2195 ² = 0,711 кН.
Определим радиальную нагрузку, действующую на подшипник [3]:
Р = Х*V* Ra*kσ*kт,
Где Х=1 – коэффициент радиальной нагрузки;
V=1 – коэффициент вращения;
Kσ=1,3…1,5 – коэффициент безопасности, учитывающий характер нагрузки: умеренные толчки;
Kт=1 – температурный коэффициент.
Получим:
Р = 1*1*0,711*1,4*1 = 0,995 кН;
Определим долговечность работы по формуле [3]:
р
L = а1* а2*(С/р) *10 /60*п,
где С = 10 кН – паспортная динамическая грузоподъемность;
Р = 0,995 кН – эквивалентная нагрузка;
р = 3 – для шариковых подшипников;
а1 = 1 – коэффициент надежности;
а2 = 0,75 – обобщенный коэффициент совместного влияния качества металла и условий эксплуатации;
получим:
L = 1*0,75*(10/0,995) ³*10 /60*296,3 = 42826 ч;
Необходимо соблюдение условия:
L > Lhe = Lh*μ = 18000*0,25 = 4500 ч;
42826 ч > 4500 ч.
12. Расчет промежуточного вала на прочность
Определим расстояния между сечениями вала:
а = 31 мм;
b = 38 мм;
Построим эпюры изгибающих моментов в вертикальной плоскости (рис. 7):
1. М(z) = Ra1*z, при 0 < z < a;
М(0) = Ra1*0 = 0;
М(а) = Ra1*а = 676*0,031 = 20,96 Н*м;
2. М(z) = Ra1*(а + z) + Ft2б*z, при а < z < (a + b);
М(0) = Ra1*а = 676*0,031 = 20,96 Н*м;
М(b) = Ra1*(а + b) + Ft2б*b = 676*(0,031 + 0,038) + 488*0,038 = 65,2 Н*м;
3. М(z) = Ra1*(а + b + z) + Ft2б*(b + z) - Ft1т*z, при (а + b) < z < (a + b + b);
М(0) = Ra1*(а + b) + Ft2б*b = 676*(0,031 + 0,038) + 488*0,038 = 65,2 Н*м;
М(z) = Ra1*(а + b + b) + Ft2б*(b + b) - Ft1т*b = 676*(0,031 + 0,038 + 0,038) +
+ 488*(0,038 + 0,038) - 2328*0,038 = 20,96 Н*м;
4. М(z) = RB1*z, при 0 < z < a;
М(0) = RB1*0 = 0;
М(а) = RB1*а = 676*0,031 = 20,96 Н*м;
Построим эпюры изгибающих моментов в горизонтальной плоскости (рис. 7):
1. М(y) = Ra2*y, при 0 < y < a;
М(0) = Ra2*0 = 0;
М(а) = Ra2*а = 219,5*0,031 = 6,8 Н*м;
2. М(y) = Ra2*(а + y) + Fr2б*y, при а < y < (a + b);
М(0) = Ra2*а = 219,5*0,031 = 6,8 Н*м;
М(b) = Ra2*(а + b) + Fr2б*b = 219,8*(0,031 + 0,038) + 204*0,038 = 22,9 Н*м;
3. М(y) = Ra2*(а + b + y) + Fr2б*(b + y) - Fr1т*y, при (а + b) < y < (a + b + b);
М(0) = Ra2*(а + b) + Fr2б*b = 219,8*(0,031 + 0,038) +204*0,038 = 22,9Н*м;
М(a) = Ra2*(а + b + b) + Fr2б*(b + b) - Fr1т*b = 219,5*(0,031 + 0,038 + 0,038) + 204*(0,038 + 0,038) - 847*0,038 = 6,8 Н*м;
... число клиноременной передачи отличается от принятого. В связи с этим пересчитаем кинематические параметры редуктора табл. 3.1. Таблица 3.1 – Уточненные кинематические параметры приводной станции Показатель Обозначение Ед. измер. Значение Передаточное число клиноременной передачи u - 2,53 редуктора uред - 7,00 первой ступени u1 - 2,65 второй ступени u2 - 2,64 ...
... Uред.ст = 5,6. Уточним полученное значение передаточного отношения клиноременной передачи: Uкл.рем.ст. = Uпр / Uред.ст. = 10,8 / 5,6 = 1,93 Определим значения мощности на каждом из валов привода конвейера. Мощность на выходном валу электродвигателя (кВт) определяется по формуле (9). Ртреб.эл. = Ррем1 = 8,87 кВт (9) Мощность на входном валу ...
приводной станции: Частоты вращений, об/мин: Мощности, кВт: Вращающее моменты, Нм: 2. РАСЧЕТ ЦЕПНОЙ ПЕРЕДАЧИ Исходные данные: Мощность на ведущей звездочке Вт Частота вращения ведущей звездочки мин-1 Передаточное число передачи Режим работы передачи - ВТ Угол наклона передачи к горизонту Срок службы передачи часов Расчет: Выбираем тип цепи из наиболее ...
... (от передвижения источников загрязнения) 1180,48 Всего за год: 211845,25 10. Совершенствование системы электроснабжения подземных потребителей шахты Расчет схемы электроснабжения ЦПП до участка и выбор фазокомпенсирующих устройств Основными задачами эксплуатации современных систем электроснабжения горных предприятий являются правильное определение электриче ...
0 комментариев