2.5 Построение модели звена второго порядка методом площадей

При q=1 и t=0 получаем объект второго порядка. Рассчитаем постоянные времени T1 и T2 при помощи метода площадей:

Для определения параметров передаточной функции методом площадей необходимо построить графики функций:

1)

2)

Тогда можно определить площади под графиками данных функций (S1 и S2 соответственно). Результаты вычислений представлены ниже.

S1 =

309.8824

S2 =

5.9162e+004

Графики данных функций приведены на рисунках 2.6 и 2.7 соответственно.

Рисунок 2.6 – График функции


Рисунок 2.7 – График функции

Теперь необходимо проверить соотношение . Если , то метод площадей применять нельзя, необходимо использовать метод грубых площадей. В нашем случае  (полный листинг m-файла приведен в приложении В). Значит, применим метод грубых площадей.

Для этого нужно найти точку перегиба графика переходного процесса. Точка перегиба имеет координаты: t = 90 c, , y(tп)=0.09.

Берем точку t правее точки перегиба (t>tп) воспользуемся формулой:

, где

In=, площадь кривой после точки перегиба (пределы интегрирования: от 90(tп) до 600(¥)), причем, =k*d(t), где d(t)=1-h(t), следовательно:

Таким образом, реализуя данный алгоритм, получаем следующие результаты:

T1 =

237.2624

T2 =

72.6200

Transfer function:

514.3

---------------------------

1.723e004 s^2 + 309.9 s + 1

График переходного процесса для такого звена представлен на рисунке 2.8

Рисунок 2.8 – График переходного процесса для звена второго порядка, рассчитанного с помощью метода площадей


2.6 Построение математической модели звена второго порядка методом Ротача

Проведем в точке перегиба касательную, для определения интервала времени Т0, заключенного между точками пересечения этой касательной оси абсцисс и линии установившегося значения h переходной характеристики:

Рисунок 2.9 – Нормированный переходный процесс

Таким образом, запишем величины, являющиеся входными данными:

T0=526 tп=90, y(tп)=0,09.

Введем обозначение:

Так как , то возможна аппроксимация инерционным звеном второго порядка без запаздывания (т.е. q=1, t=0), следовательно, получаем следующую модель:

Таким образом, запишем модель звена второго порядка без запаздывания:

 или

Теперь построим переходный процесс для данной передаточной функции.

w=tf([514.3],[8396 478.66 1]);

step(w, 600)

grid on

Результат представлен на рисунке 2.10.

Рисунок 2.10 – График переходного процесса для звена второго порядка, рассчитанного методом Ротача

2.7 Выбор наилучшей аппроксимирующей модели

Для выбора лучшей аппроксимирующей модели объекта управления среди найденных моделей сравним теоретические и экспериментальный переходные процессы. Для оценки качества полученных передаточных функций, описывающих объект управления, вычислим оценку χ2 по формуле:

Проведенный расчет дает следующие результаты:

%Расчет погрешностей

k=514.3;

y_real=[24.44 60 93.33 125.5 154.44 180];

y1=[32 72 101 122 136 146];

y2=[31.1 73.3 106.67 131.11 148.89 160];

y3=[30 58.33 63.33 103.33 116.67 128.33];

tmp=0;

for i=1:6

tmp = tmp + (y_real(i)-y1(i))^2;

end

x1=sqrt(tmp)/k

tmp=0;

for i=1:6

tmp = tmp + (y_real(i)-y2(i))^2;

end

x2=sqrt(tmp)/k

tmp=0;

for i=1:6

tmp = tmp + (y_real(i)-y3(i))^2;

end

x3=sqrt(tmp)/k

x1 =

0.0818

x2 =

0.0571

x3 =

0.1445

x1 – соответствует оценке звена запаздывания; x2 – соответствует апериодическому звену второго порядка, рассчитанному методом площадей; x3 – соответствует апериодическому звену второго порядка, рассчитанному методом Ротача.

Так как наименьшая оценка χ2 получилась у апериодического звена второго порядка, рассчитанного интегральным методом, то это звено и возьмем в качестве модели нашей системы. Передаточная функция объекта управления имеет вид:



Информация о работе «Синтез закона управления и настройка промышленного регулятора для стабилизации температуры в условиях возмущений»
Раздел: Промышленность, производство
Количество знаков с пробелами: 25029
Количество таблиц: 2
Количество изображений: 21

Похожие работы

Скачать
132911
10
46

... несчастных случаев. Рассмотрен вопрос о мероприятиях по защите окружающей среды. 7. Технико-экономическое обоснование проекта   7.1. Выбор и обоснование аналога В качестве аналога автоматизированной системы управления тепличным хозяйством выберем комплекс «АСУ «Теплица» ЗАО “НАНКО”, который реализует следующие основные функции: ·  регистрацию и отображение значений контролируемых ...

Скачать
62018
0
34

... : -  по маслу 20кПа -  по воде 20,1кПа Максимальное рабочее давление: -  масла 0,5Мпа - воды 0,5МПа Функциональная схема системы регулирования температуры смазочного масла приведена на рис. 9. Она содержит два маслоохладителя параллельно ...

Скачать
49761
0
0

... . Алгоритм управления показывает, как должно изменяться управление u, чтобы обеспечить заданный алгоритм функционирования. Алгоритм функционирования в автоматической системе реализуется с помощью управляющих устройств. В основе используемых в техники алгоритмов управления лежат некоторые общие фундаментальные принципы управления, определяющие, как осуществляется увязка алгоритма управления с ...

Скачать
19484
4
15

... и науки Украины Севастопольский национальный технический университет Кафедра технической кибернетики КУРСОВОЙ ПРОЕКТ по дисциплине «Системы автоматики» на тему: «Разработка и исследование системы автоматического регулирования температуры электропечи на базе промышленного регулятора Р-111» (пояснительная записка) Выполнил: ст. гр. А-41з Брусинов С.Э. Проверил: профессор ...

0 комментариев


Наверх