1.5 Числовые характеристики случайных величин
Законы распределения полностью характеризуют случайные величины, но их не всегда можно получить. Случайные величины достаточно полно можно охарактеризовать, зная их числовые характеристики, которые определяются с помощью так называемых моментов (начальных, центральных и смешанных).
Начальные моменты
Начальные моменты характеризуют отклонение случайной величины относительно начала отсчета
, (1.12)
где f(x) –плотность вероятности случайной величины X.
При к = 1
. (1.13)
Математическим ожиданием случайной величины mx называется начальный момент первого порядка a1, который характеризует среднее значение случайной величины.
Для дискретных, случайных величин
, (1.14)
где xi и pi - возможные значения случайных величин и их вероятности.
Для любой функции случайного аргумента математическое ожидание равно
. (1.15)
Для функции двух случайных аргументов математическое ожидание равно
. (1.16)
При к = 2
. (1.17)
Средним квадратом случайной величины называется начальный момент второго порядка -a2, который характеризует среднюю мощность случайной величины.
Центральные моменты
Центральные моменты характеризуют отклонение случайной величины относительно среднего значения.
. (1.18)
называется центрированной величиной.
При к = 1
. (1.19)
При к = 2
. (1.20)
Дисперсией случайной величины Dx называется центральный момент второго порядка -m1, который характеризует степень рассеивания случайной величины относительно среднего значения.
Величина называется средним квадратичным отклонением.
Между моментами существует следующая связь:
. (1.21)
Смешанные центральные моменты
Корреляционный момент - kxy характеризуют статистическую зависимость между случайными величинами X и Y.
(1.22)
На практике часто используется безразмерная величина, называемая коэффициентом корреляции
. (1.23)
Случайные величины X и Y называют коррелированными, если kxy ¹ 0, и некоррелированными, если kxy = 0.
Пример 1.1. Определить функцию распределения и числовые характеристики для случайной величины с равномерной плотностью вероятности, график которой приведен на рис. 1.5.
Решение: Функцию распределения можно определить из соотношения
При этом функция распределения имеет вид (рис. 1.6).
Рис. 1.5 Рис. 1.6
Определим числовые характеристики.
Математическое ожидание
.
Средний квадрат
Дисперсия
.
2. Случайные процессы и их статистические характеристики
Случайным (стохастическим) процессом называют случайную функцию, аргументом которой является время.
Реализацией называется неслучайная функция времени xi(t), которая является возможным значением случайного процесса X(t).
Сечением случайного процесса в момент времени t1 называются возможные значения случайного процесса X(t1) в момент времени t1.
Статистические методы изучают не каждую из реализаций xi(t1), образующих множество X(t), а свойство всего множества с помощью усреднения свойств его реализаций. Усреднение может выполняться по множеству и по времени.
Усреднение по множеству выполняется над множеством реализаций в фиксированный момент времени.
Усреднение по времени выполняется над одной реализаций на протяжении достаточно длинного промежутка времени –Т.
Для случайных процессов функция распределения и плотность вероятности полностью определяет статистические свойства процессов и зависит как от уровня -х, так и времени -t.
(2.1)
Эти функции характеризуют случайный процесс в фиксированный момент времени -t1.
Для полной характеристики случайного процесса в произвольные моменты времени необходимо знать многомерные законы.
(2.2)
Эти законы громоздки, и оперировать ими сложно, поэтому на практике часто достаточно знание одномерных или двумерных законов. Это справедливо для широкого класса так называемых Гаусcовских процессов, или процессов с нормальным законом распределения. Например, помехи в САУ, действие которых обусловлено многими случайными факторами подчиненным различным законам распределения, и чем больше множество таких факторов, тем в значительно большей мере процесс будет приближаться к нормальному закону (в соответствии с центральной предельной теоремой).
... . Деятельность формирует психические процессы. Любая деятельность – это соединение внутренних и внешних поведенческих действий и операций. Мы рассмотрим каждый вид психической деятельности отдельно. 2. Психические процессы как форма деятельности Психические процессы – общее название ощущений, восприятий, приспособлений, внимания, памяти, мышления, воображения, речи. Все они участвуют в ...
... (Балаша-Фора-Мальгранжа, Черенина, Джефферсона, Хиллиера и др.) являются модификациями метода ветвей и границ с учётом специфики условий задачи. 4. Построение оптимальной последовательности заданий на обработку в узле вычислительной системы 4.1 Формализация вычислительного процесса и рабочей нагрузки Узел вычислительной системы представляется в виде совокупности оборудования и ...
... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...
... инструментарий исследования организационных отношений. 3.4 Заслуги А.А. Богданова в разработке организационной науки Главная заслуга российских исследователей - разработка фундаментальных методологических проблем теории организации. Одним из выдающихся ученых, внесших наиболее весомый вклад в разработку организационной науки, является А.А.Богданов (Малиновский) (1873 - 1928). Добытые и ...
0 комментариев