6.   Увеличение количества роликов за счет уменьшения их диаметров при максимальном заполнении габарита уменьшает нагрузочную способность схемы US.

7.   С увеличением  для схемы BRD максимальный угол разворота B’ уменьшается.

8.   Габарит схемы US значительно меньше, чем схемы BRD при одинаковом a = R/r.

9.   Сравнивая схему US с одним роликом и схему BRD с тремя кольцами при минимальной нагрузочной способности, т.е. при В = 150 для US и В = 00 для BRD, замечаем:

a)        если b = 0,5 для BRD, то при a > 1,09 осевое усилие, передаваемое схемой US выше, чем схемой BRD, при a <= 1,09 осевое усилие, передаваемое схемой BRD выше, чем схемой US.

b)        если b = 1,0 для BRD, то при a > 1,31 осевое усилие, которое может передать механизм, схемы US больше, чем схемы BRD, при a <= 1,31 осевое усилие, которое может передать механизм, схемы BRD больше, чем схемы US.

c)         если b => 1,5 для BRD осевое усилие, которое может передать механизм, схемы BRD выше, чем схемы US при всех сравниваемых значениях a = R/r.

Используя данные выводы можно дать некоторые рекомендации по выбору механизма, имеющие практическое значение:

1.        Если определяющим фактором выбора механизма является габарит, то следует выбрать схему вал-ролик (US).

2.        Ели габарит механизма не играет решающую роль, а определяющим фактором выбора механизма является возможно большее осевое усилие, которое может передать механизм, то следует выбрать схему вал-кольца (BRD).


2.3. Синтез валикокольцевого механизма по схеме вал-кольца (BRD)

Рассмотрим выбор геометрического параметра  из условий:

а) максимальной нагрузочной способности;

б) выполнения заданного закона перемещения. [ ]

а) Выбор геометрического параметра  из условия максимальной нагрузочной способности.

На основании формулы (14) определим величину  как:

 для r = 1

Обозначим , тогда

На рис. 14 строим график , затем график , где , М1- масштаб .

И по этим двум графикам строим зависимость

Радиус вала r берем в интервале  см.

Получаем область выбора геометрического параметра  в зависимости от r и А = R/r.

в) Выбор геометрического параметра  из условия выполнения заданного закона перемещения.

Диапазон работы ВКМ определяется величиной аналога скорости механизма, равного  [ ]

Если задан радиус вала r, то для того, чтобы кольца ВКМ могли повернуться на угол, равный

(26)

необходимо определенное соотношение R, r и r1. Для различных значений R, r и r1 существует определенное значение угла поворота кольца B’, определяемое величинами А = R/r, , до которого касание кольца и вала происходит в точке. Дальнейшее увеличение угла В ведет к тому, что контакт между телами происходит в двух точках. При этом существует некоторое предельное значение угла Впред, которое будет максимальным для данных R, r и r1.

Начиная с B’ дальнейшее увеличение угла В требует резкого увеличения момента МД, затрачиваемого на преодоление момента от сил трения кольца о вал и действия силы Р.

Угол  недопустим при работе механизма раскладки.

Значение угла B’ может быть найдено по формуле (27):

(27)

Необходимый угол разворота колец для сомкнутой намотки:

(28)

где ,

ib-k – передаточное отношение от вала раскладчика к катушке;

d – диаметр кабеля;

r – радиус вала раскладчика.

Передаточное отношение от вала раскладчика к катушке для изолировочной машины фирмы «Круп» на 32 бумажных ленты:

, тогда

Теперь строим на осях  и  на рис. 15 зависимость Ф. Угол наклона  прямой к оси  найдем следующим образом:

(29)

где - масштаб ;

*- масштаб tgB’.

На рис. 15 строим также графики ,

Задаваясь значением d – диаметра кабеля ( в нашем случае d = 5 см) мы можем построить график зависимости .

На основании графиков  с рис. 14 и рис. 15 строим совмещенный график  на рис. 16.

Получили семейство кривых . Точка пересечения кривых с одним и тем же значением «a» дает нам минимальное значение r для выполнения обоих условий:

а) максимальной нагрузочной способности;

б) выполнения заданного закона перемещения

при конкретном диаметре кабеля d = 5 см. А заштрихованная область есть зона выбора возможных значений r и b.

Аналогично можно провести выбор  и для других значений d – диаметра кабеля.

Задаваясь максимальным диаметром кабеля dMAX, который будет изготавливаться на машине, можно получить минимальное и макисмальное значения  для выполнения обоих условий. Выбирать конкретное значение b из предполагаемого диапазона следует из максимальных значений, т.к. выполнение заданного закона будет обеспечено, а нагрузочная способность будет иметь коэффициент запаса сцепления на случай возможных перегрузок и механизм будет гарантирован от пробуксовок.

Таким образом, получено совместное решение двух поставленных задач о выборе относительной величины b, что имеет не только теоретическое, но и практическое значение.


III. Технологическая часть   3.1. Описание конструкции и назначения детали. Техконтроль технологичности конструкции.

Деталь – шарикоподшипник № 111 изготовляется из стали ШХ 15 и используется в механизме раскладки.

Механизм раскладки предназначен для равномерной рядовой укладки кабеля или его элементов вдоль приемного барабана.

В последнее время для раскладки используют валикокольцевые механизмы. Ведущая каретка валикокольцевого механизма может иметь вертикальное или горизонтальное расположение, внутри ее проходит гладкий вал. На этом валу и находится разрабатываемая деталь – шарикоподшипник № 111 со специально обработанным внутренним кольцом. Подшипник в процессе работы прижимается к гладкому валу с усилием Р и может поворачиваться на некоторый угол b.

Деталь изготовлена из дорогой, дефицитной стали ШХ 15, твердость которой HRC 61…65. Сталь ШХ 15 – материал труднообрабатываемый.

Для обработки используют следующие инструменты: резцы с пластинками из керамики на основе нитрида кремния с покрытием.

 Деталь имеет сложную геометрическую форму (наличие фасонной поверхности, в дальнейшем «оливаж»). Деталь может быть обработана при использовании одного специального приспособления. В целом конструкция детали технологична. Базирование детали производим по наружному кольцу и по торцу. Основное значение для служебного назначения детали имеет поверхность оливажа.


3.2. Определение типа производства. Расчет количества деталей в партии.

Исходные данные:

Годовая программа изделий N = 11 000 шт.

Режим работы предприятия – 2 смены

Действительный годовой фонд времени работы оборудования Fд=4029 ч. [ ]

Такт выпуска деталей:

 мин./шт (30)

Коэффициент серийности:

(31)

(32)

Длительность операций определяем на основе прикидочных расчетов [ ]

Токарная:

То=2*0,18*593,9*6,5*10-3 = 0,14 мин.

Тш-к=2,14*0,14 = 0,3 мин.

Шлифовальная:

То=1,8*57*6*10-3 = 0,615 мин.

Тш-к=2,1*0,615=1,293 мин.

Выглаживающая:

То=0,18*57*5,9*10-3 = 0,061 мин.

Тш-к=2,14*0,061 = 0,131 мин.

=0,575 мин.

По формуле (31):

Производство – мелкосерийное.

Количество деталей в партии:

 шт. (33)

где а – периодичность запуска-выпуска изделий

Скорректируем количество деталей в партии:

= 1 смена

 шт.

Принимаем n = 662 шт.

3.3. Технико-экономический расчет маршрута обработки.

Маршрут обработки:

Выбор баз: наружная поверхность и торец.

Операция 005. Токарная. За один установ обрабатывается конус под углом 200 с одной стороны. За второй установ обрабатывается конус под углом 200 с другой стороны. Для того, чтобы обработка проходила за 1 проход применяем широкие резцы.

Операция 010. Шлифовальная. Сфера обрабатывается фасонным шлифовальным кругом методом врезания на внутришлифовальном станке. Использование фасонного круга позволяет получить требуемую точность обработки и шероховатость.

Операция 015. Выглаживающая. Выглаживание уменьшает шероховатость поверхности, точность остается прежней. Используем приспособление для внутреннего выглаживания.

Операция 020. Слесарная. Обрабатываем острые кромки, получившиеся на токарной операции.

Операция 025. Промывочная. Деталь моем в моечном растворе в моечной машине конвейерного типа.

Операция 030. Контрольная. Используется специальное контрольное приспособление.

Рассмотрим у какого варианта сумма текущих и приведенных затрат на единицу продукции будет меньше.

(34)

1)  Токарная операция:

Ст.ф. =– рабочий V разряда

Сз. = руб./час

=

2)  Шлифовальная

3)  Выглаживающая

Технологическая себестоимость обработки:

Поэтому разрабатываемый техпроцесс экономически более выгоден.

Экономический эффект на программу выпуска:

3.4. Специальная часть. Выглаживание.

Заданные геометрические и физические параметры качества поверхности детали могут обеспечиваться с помощью разных методов упрочняюще – отделочной и упрочняющей обработки:

-   механические (алмазное выглаживание, обкатывание, шариками или роликами, дробеструйная обработка, виброгалтовка и др.),

-   термические (закалка ТВЧ, газопламенная закалка и др.),

-   термохимические (цементация, азотирование и др.),

-   электрохимические (хромирование, борирование и др.).

Упрочняюще-отделочная обработка наряду упрочнением металла поверхностного слоя обеспечивает благоприятный для эксплуатации рельеф поверхности детали.

Методы упрочняюще-отделочной обработки основаны на поверхностном пластическом деформировании, в результате которого изменяются микроструктура и физико-механические свойства металла поверхностного слоя. Это сопровождается повышением его твердости, прочности, а также формированием в поверхностном слое металла остаточных напряжений сжатия. Кроме того, изменяются геометрические характеристики рельефа поверхности, обуславливающие увеличение площади опорной поверхности, обуславливающие увеличение площади опорной поверхности. В итоге повышаются эксплуатационные свойства деталей: износостойкость, усталостная прочность и др.

Наиболее простым и эффективным методом упрочняюще-отделочной обработки является алмазное выглаживание. Особенностью этого метода является применение алмаза (природного или синтетического) и реже-твердого сплава в качестве формирующего элемента. Благодаря ряду преимуществ алмаза перед другими инструментальными материалами (высокие твердость и теплопроводность, низкий коэффициент трения по металлу и др.) алмазное выглаживание применимо для обработки большинства металлов и сплавов, в том числе и закаленных до твердости HRC 61…65.

Алмазное выглаживание можно рассматривать как процесс возникновения и развития физических явлений, происходящих в контактной зоне, и как технологический метод. Соответственно различают параметры процесса и технологические параметры.

Основным параметром процесса выглаживания, влияющим на качество поверхности детали, стойкости инструмента и производительности обработки являются:

-    давление в контакте инструмента с заготовкой;

-    площадь контакта;

-    кратность нагружения каждого участка поверхности заготовки в процессе выглаживания;

-    скорость деформирования;

-    трение между инструментом и заготовкой;

-    температура в контакте.

При правильно заданных и обеспеченных параметрах деталь приобретает высокие эксплуатационные свойства.

Параметры процесса взаимосвязаны, а также зависят от физико-механических свойств материала заготовки и инструмента и технологических параметров метода:

-    формы и размера рабочей части инструмента;

-    силы выглаживания;

-    подачи;

-    скорости выглаживания;

-    смазочных и охлаждающих средств, применяемых при выглаживании.

Выберем технологические параметры:

1)        Форма и размеры рабочей части алмаза влияют почти на все параметры процесса выглаживания (за исключением скорости деформирования). Инструменты при алмазном выглаживании применяются с различной формой рабочей части алмаза (сферической, торовой, конической). Сферическая форма наиболее универсальна, так как позволяет обрабатывать наружные и внутренние поверхности вращения, а также плоские поверхности. Недостаток сферической формы рабочей части выглаживателя – необходимость точной установки выглаживателя на станке и меньшая стойкость по сравнению с выглаживателями других типов. Наиболее распространена и нормализована сферическая форма с размерами радиуса R = 0,5…4,0 мм. При увеличении радиуса исходные поверхности сглаживаются в меньшей степени из-за уменьшения глубины внедрения выглаживателя.

В зависимости от физико-механических свойств обрабатываемого материала и заданных параметров качества поверхности детали выбираем сферическую форму рабочей части алмазного выглаживателя с размером радиуса R = 0,5…1,5 мм.

2)        Те же параметры процесса зависят от другого технологического параметра – силы выглаживания Р. величина назначаемой силы связана с обеспечением заданного качества поверхности детали при допустимой стойкости инструмента и обусловлена физико-механическими свойствами металла, формой и радиусом рабочей части инструмента. Наиболее приемлемый диапазон Р = 5…25 кгс. Слишком малая величина силы не обеспечивает достаточного деформирования обрабатываемого материала заготовки из-за малой величины контактного давления. Превышение верхнего предела приводит к возникновению в контактной зоне высокого давления, что вызывает падение стойкости инструмента и ухудшение качества обрабатываемой поверхности. Шероховатость поверхности в наибольшей степени зависти от силы выглаживания. Вначале увеличение силы уменьшает высоту исходных неровностей вплоть до их полного сглаживания и образования нового рельефа с минимальной величиной неровностей. Дальнейшее увеличение силы приводит к возрастанию высоты неровностей в связи с ростом пластических искажений рельефа и частичным разрушением обрабатываемой поверхности (микротрещины, отслоение металла и др.)

С этой точки зрения и учитывая физико-механические свойства обрабатываемого материала выбираем силу выглаживания Р = 15 кгс.

3)        Подача при выглаживании – технологический параметр, влияющий на кратность приложения нагрузки, а также на производительность обработки. Для алмазного выглаживания характерны малые величины подачи: S = 0,02…0,10 мм/об. При подачах свыше верхнего предела на поверхности остаются необработанные участки, при чрезмерно малых подачах происходит усталостное разрушение металла заготовки.

Для стали ШХ 15 выбираем подачу S = 0,08 мм/об для обеспечения выглаживания.

4)        Скорость выглаживания определяет такие параметры процесса как скорость деформирования, температура выглаживания, трение и давление в контакте. С увеличением скорости температура выглаживания растет и при значениях > 200 м/мин может подниматься выше 6000С, что сопровождается повышенным износом алмаза.

5)        Применение смазочно-охлаждающих средств при алмазном выглаживании сравнительно малоэффективно вследствие выдавливания их из контакта инструмента с заготовкой. Наилучшим образом зарекомендовали себя индустриальные масла и консистентные смазки (ЦИАТИМ, солидол).

Рекомендации на выглаживание сферы радиусом R300,02 из материала – сталь ШХ 15.

1)  Сферическая форма рабочей части алмазного выглаживателя с радиусом R = 1,5 мм.

2)  Сила выглаживания Р = 15 кгс

3)  Подача S = 0,08 мм/об

4)  Скорость выглаживания n = 100 об/мин., V = 172,7 м/мин.

5)  Смазочно-охлаждающие средства – солидол или ЦИАТИМ.

3.5. Расчет припусков.

Расчет припусков на механическую обработку выполняем расчетно-аналитическим методом.

Подшипник отнесем к классу дисков и колец.

()

Таблица 20.

К расчету припусков.

Технологические операции Элементы припуска, мкм

Расчетный припуск, 2zmin, мкм

Расчетный размер,

dр, мм

Допуск,

, мкм

Предельный размер, мм Предельные значения припуска, мкм

Rz

Т

dmin

dmax

2zminпр

2zmaxпр

Заготовка

Æ

Токарная

0,8

50

50

17

1

33 2*39

55,282

55,36

16

200

54,986

55,16

55,002

55,36

174 358

Заготовка

Æ

Шлифовальная чистовая

0,8

2,5

5

17

0,68

33 2*39

54,952

55,03

16

30

54,986

55,00

55,002

55,03

14 28

Суммарное значение пространственных отклонений для заготовки [ ]:

=17 мкм

*- допуск на цилиндричность

- радиальный зазор [ ]

Остаточные пространственные отклонения на обработанных поверхностях, имевших исходные отклонения, являются следствием копирования погрешностей при обработке. Для из определения можно воспользоваться эмпирической формулой:

(35)

где kу – коэффициент уточнения формы

* после токарной обработки:

 мкм

* после шлифования:

 мкм

Погрешность установки :

(36)

*- погрешность базирования,

*- погрешность закрепления,

*- погрешность положения заготовки в приспособлении.

а) Погрешность базирования:

При установке на охватывающую поверхность * равна наибольшему зазору между базой и установочной поверхностью:

(37)

где - максимальный предельный размер установочного элемента приспособления,

*- наименьший предельный размер наружного кольца подшипника

По формуле (37) получим:

*= 90,015 - 89,985 = 0,030 мм = 30 мкм

б) Погрешность закрепления:

В данном случае *возникает за счет биения внутреннего кольца подшипника.

*= 12 мкм [ ]

в) Погрешность положения в приспособлении:

(38)

*- погрешность изготовления отдельных деталей приспособления,

*- погрешности, обусловленные наличием зазоров при посадке заготовок на установочные элементы приспособления, = 0,

*- погрешность установки приспособления на станке из-за неточности изготовления посадочных мест деталей приспособления, = 0,

*- погрешность износа деталей приспособления. В расчетах не учитываем,  = 0.

Технологические возможности изготовления приспособлений в современных инструментальных ценах обеспечивают выдерживание составляющей * в пределах 0,01…0,005 мм.

Примем *=0,01 мм => *=0,01 мм

По формуле (36):

мм = 33 мкм

Расчетные минимальные припуски на обработку определяем как:

(39)

Для токарной операции:

= 2* 39 мкм

Для шлифовальной операции:

= 2* 39 мкм

1)     Для токарной операции:

Расчетный размер заготовки:

= 55,36 – 2*0,039 = 55,282 мм

= 55,3 – 0,2 = 55,1 мм

В нашем случае:

=55,36 – 55,002 = 0,358 мм

*=55,16 – 54,986 = 0,174 мм

Проверка правильности расчетов:

*-*=

*-*= 358 – 174 = 184 мкм

 = 200 – 16 = 184 мкм

184 = 184

Общий номинальный припуск:

*=358 + 2 – 200 = 160 мкм

ДАБАВИТЬ РИС. 17 на СТР. 98

2)     Для шлифовальной операции:

Для конечного перехода в графу «расчетный размер» записываем наибольший предельный размер детали по чертежу (часть допуска отдаем на выглаживание)

dр = 55,03 мм

Расчетный размер заготовки:

=55,03 – 0,078 = 54,952 мм

= 55,03 – 0,03 = 55 мм

*28 мкм

*14 мкм

Проверка правильности расчетов:

*-*=

*-*= 28 – 14 = 14 мкм

 = 30 – 16 = 14 мкм

14 = 14

Общий номинальный припуск:

*=28 + 2 – 30 = 0

ДАБАВИТЬ РИС. 18 на СТР. 99

3.6. Расчет элементов режима резания и основного времени

I.    Токарная операция

1)     Длина рабочего хода суппорта

(40)

где - длина резания,

у – подвод, врезание и перебег инструмента,

*- дополнительная длина хода

у = 5 мм [15, с.300]

*6,5 + 5 = 11,5 мм

2)     Подача суппорта на оборот шпинделя:

S0 = 0,3 мм/об [15, с.23] – при использовании широких резцов

3)     Стойкость инструмента:

(41)

Тм = 50 мин

= 0,565 [15, с.27]

*50 * 0,565 = 28,25 мин

4)     Расчет скорости резания

[15, с.29] (42)

При использовании широких резцов

Vтабл = 65 м/мин [15, с.31]

к1 = 0,45 [15, с.32]

к2 = 2,0 [15, с.33]

к3 =0,85 [15, с.34]

V = 65 * 0,45 * 2,0 * 0,85 = 49,725 м/мин.

5)     Расчет рекомендуемого числа оборотов шпинделя станка

= 263,93 об/мин.

Уточняем число оборотов шпинделя по паспорту станка.

Принимаем n = 250 об/мин.

Уточняем скорость резания:

=47,1 м/мин

6)     Расчет основного машинного времени обработки

=0,306 мин

7)     Расчет сил резания

(43)

*=75 кг [15, с.35]

к1 = 0,8

к2 = 1,1

= 75 * 0,8 * 1,1 = 66 кг

8)     Расчет мощности резания

(44)

= 0,2 кВт [15, с.72]

*=2,3 (сталь ШХ 15, НВ 200)

= 0,509 кВт

Потребная мощность электродвигателя станка:

(45)

ч = 0,80…0,85 [9, с.95]

= 0,6 кВт

Фактическая мощность станка N = 4 кВт. Станок обеспечивает требуемую мощность.

II.  Шлифовальная операция

1)     Выбор характеристики круга [17, с.222]

Для получения шероховатости поверхности 7-го класса и при HRC < 50 круг 24А25НС17К1 фасонный.

2)     Определение размеров шлифования круга

[17, с.222]

40 мм

3)     Расчет числа оборотов круга

Принимаем скорость круга V = 30 м/с

=14 331,21 об/мин

По паспарту станка принимаем

12 600 об/мин

Уточняем скорость круга по принятым оборотам:

=26,4 м/сек

4)     Определение частоты вращения изделия


Информация о работе «Исследование валикокольцевых механизмов»
Раздел: Промышленность, производство
Количество знаков с пробелами: 78780
Количество таблиц: 21
Количество изображений: 14

0 комментариев


Наверх