3.   Исследование дифференцирующих звеньев

a.   Исследование частотных характеристик идеального дифференцирующего звена

Для исследования частотных характеристик идеального дифференцирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 36. Логарифмические частотные характеристики идеального дифференцирующего звена представлены на рисунке 37, график переходной функции – на рисунке 38.

Рисунок 36 – Структурная схема для исследования идеального дифференцирующего звена

Рисунок 37 – Логарифмические частотные характеристики идеального дифференцирующего звена


Рисунок 38 – Переходная функция идеального дифференцирующего звена

b.   Реализация идеального дифференцирующего звена

Реализуем идеальное дифференцирующее звено схемой, изображенной на рисунке 39. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 40 и 41, переходная функция – на рисунке 42.

Рисунок 39 – Электрическая принципиальная схема дифференцирующего звена

Рисунок 40 – ЛАЧХ и ЛФЧХ дифференцирующего звена

Рисунок 41 – ЛАЧХ и ЛФЧХ дифференцирующего звена с инвертором


а)

б)

Рисунок 42 – Переходная функция схемы реализации идеального дифференцирующего звена


c.    Исследование частотных характеристик реального дифференцирующего звена

Для исследования частотных характеристик реального дифференцирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 43. Логарифмические частотные характеристики реального дифференцирующего звена представлены на рисунке 44, переходные функции – на рисунке 45.

Рисунок 43 – Структурная схема для исследования реального дифференцирующего звена


Рисунок 44 – Логарифмические частотные характеристики реального дифференцирующего звена

Рисунок 45 – Переходные функции реального дифференцирующего звена


d.   Реализация реального дифференцирующего звена

Реализуем реальное дифференцирующее звено с помощью схем, изображенных на рисунке 46. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 47, переходные функции – на рисунке 48.

а)б)

а) -цепочка;б) -цепочка

Рисунок 46 – Электрические принципиальные схемы реального дифференцирующего звена

Рисунок 47 – ЛАЧХ и ЛФЧХ схем реализации дифференцирующего звена


Рисунок 48 – Переходная функция схемы реального дифференцирующего звена


4.   Исследование интегрирующих звеньев

a.   Исследование частотных характеристик идеального интегрирующего звена

Для исследования частотных характеристик идеального интегрирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 49. Логарифмические частотные характеристики идеального интегрирующего звена представлены на рисунке 50, график переходной функции – на рисунке 51.

Рисунок 49 – Структурная схема для исследования идеального интегрирующего звена

Рисунок 50 – Логарифмические частотные характеристики идеального интегрирующего звена


Рисунок 51 – Переходная функция идеального интегрирующего звена

b.   Реализация идеального интегрирующего звена

Реализуем идеальное интегрирующее звено схемой, изображенной на рисунке 52. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 53 и 54, переходная функция – на рисунке 55.

Рисунок 52 – Электрическая принципиальная схема интегрирующего звена


Рисунок 53 – ЛАЧХ и ЛФЧХ интегрирующего звена

Рисунок 54 – ЛАЧХ и ЛФЧХ интегрирующего звена с инвертором


Рисунок 55 – Переходная функция схемы реализации идеального интегрирующего звена

c.    Исследование частотных характеристик реального интегрирующего звена

Для исследования частотных характеристик реального интегрирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 56. Логарифмические частотные характеристики реального интегрирующего звена представлены на рисунке 57, переходные функции – на рисунке 58.


Рисунок 56 – Структурная схема для исследования реального интегрирующего звена

Рисунок 57 – Логарифмические частотные характеристики реального интегрирующего звена


Рисунок 58 – Переходные функции реального интегрирующего звена

При анализе частотных и переходных характеристик реального интегрирующего звена и его реализации можно сделать следующие выводы:


5.   Исследование изодромного звена

Изодромное звено можно условно представить в виде совокупности двух звеньев, действующих параллельно, - идеального интегрирующего и безынерционного. Поэтому данное звено совмещает полезные качества обоих звеньев и часто используется в качестве регулирующего устройства ПИ-регулятора (пропорционально-интегрального регулятора).

a.   Исследование частотных характеристик изодромного звена

Для исследования частотных характеристик изодромного звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 59. Логарифмические частотные характеристики изодромного звена представлены на рисунке 60.

Рисунок 59 – Структурная схема для исследования изодромного звена


Рисунок 60 – Логарифмические частотные характеристики изодромного звена

b.   Реализация изодромного звена

Реализуем изодромное звено схемой, изображенной на рисунке 61. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 62 и 63, переходная функция – на рисунке 64.

Рисунок 61 – Электрическая принципиальная схема изодромного звена


Рисунок 62 – ЛАЧХ и ЛФЧХ изодромного звена

Рисунок 63 – ЛАЧХ и ЛФЧХ изодромного звена с инвертором


а) б)

а) без инвертора;

б) с инвертором

Рисунок 64 – Переходная функция изодромного звена


6.   Исследование звена запаздывания

Для исследования частотных характеристик звена запаздывания в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 65. Логарифмические частотные характеристики изодромного звена представлены на рисунке 66, переходные характеристики – на рисунке 67.

Рисунок 65 – Структурная схема для исследования звена запаздывания

Рисунок 66 – Логарифмические частотные характеристики звена запаздывания


Рисунок 67 – Переходные функции звена запаздывания


Информация о работе «Исследование частотных характеристик типовых динамических звеньев»
Раздел: Промышленность, производство
Количество знаков с пробелами: 18367
Количество таблиц: 1
Количество изображений: 77

Похожие работы

Скачать
9556
22
40

... природе, а по их динамическим свойствам. Для построения систем управления необходимо знание характеристик типовых звеньев. Основными характеристиками звеньев являются дифференциальное уравнение и передаточная функция. Рассмотрим основные звенья и их характеристики. Усилительное звено (безынерционное, пропорциональное). Усилительным называют звено, которое описывается уравнением:    (2) или ...

Скачать
43651
7
12

... работы Целью работы является анализ частотных характеристик разомкнутых и замкнутых систем, получение навыков по использованию критерия устойчивости Найквиста. В работе предусматривается исследование трех систем, различающихся видом передаточной функции (ПФ) разомкнутого контура. Варианты значений параметров ПФ приведены в табл. 3.1. Замкнутая система построена по типу классической следящей ...

Скачать
14962
2
11

... частот, то переходная характеристика будет колебательной. Переходная характеристика является показателем качества при быстро изменяющемся воздействии. Для систем авторегулирования лучшей считается колебательная переходная характеристика с быстрым затуханием колебаний на вершине (рис. 4). Рис. Обычно используются следующие числовые параметры переходной характеристики: время достижения ...

Скачать
63491
3
14

... к совокупностям с одинаковыми параметрами проверяли с помощью рангового U - критерия Манна-Уитни. Глава 3. Результаты и обсуждение Был проведено исследование функциональных характеристик нервно-мышечного аппарата верхних конечностей, в частности кисти правой руки. Для анализа был выбран стимуляционный электромиографический метод. Для выявления особенностей биоэлектрического ответа скелетных ...

0 комментариев


Наверх