Горизонтальный барический градиент

Физическая география
Атмосфера. Ее состав, строение и граница Взаимодействие атмосферы с другими геосферами Солнце и солнечная радиация. Лучистая энергия Солнца, солнечный ветер Потоки солнечной радиации в атмосфере: рассеянная, отраженная, суммарная Радиационный баланс земной поверхности Тепловой баланс и тепловой режим земной поверхности и атмосферы. Различия в тепловом режиме почвы и водоемов. Суточный годовой ход температуры Изменение температуры с высотой. Инверсия температур. Заморозки Оптические явления в атмосфере Водяной пар в атмосфере. Водяной пар в воздухе Конденсация в атмосфере Дымка, туман, мгла Облака См. 17 Осадки, выпадающие из облаков Образование осадков Характеристики режима осадков Тип тропических муссонов Карты барической топографии Горизонтальный барический градиент Ускорение воздуха под действием барического градиента Местные ветры Маломасштабные вихри Процессы и факторы климатообразования Евразия Южная Америка Антарктида и Австралия
283636
знаков
0
таблиц
0
изображений

36. Горизонтальный барический градиент

Рассматривая изобары на синоптической карте, мы замечаем, что в одних местах изобары проходят гуще, в других — реже.

Очевидно, что в первых местах атмосферное давление меняется в горизонтальном направлении сильнее, во-вторых — слабее. Говорят еще: «быстрее» и «медленнее», но не следует смешивать изменения в пространстве, о которых идет речь, с изменениями во времени.

Точно выразить, как меняется атмосферное давление в горизонтальном направлении, можно с помощью так называемого горизонтального барического градиента, или горизонтального градиента давления. В главе четвертой говорилось о горизонтальном градиенте температуры. Подобно этому горизонтальным градиентом давления называют изменение давления на единицу расстояния в горизонтальной плоскости (точнее, на поверхности уровня); при этом расстояние берется по тому направлению, в котором давление убывает всего сильнее. А таким направлением наиболее сильного изменения давления является в каждой точке направление по нормали к изобаре в этой точке.

Таким образом, горизонтальный барический градиент есть вектор, направление которого совпадает с направлением нормали к изобаре в сторону уменьшения давления, а числовое значение равно производной от давления по этому направлению. Обозначим этот вектор символом — Ñр, а числовую его величину -dp/dn, где п — направление нормали к изобаре.

Как всякий вектор, горизонтальный барический градиент можно графически представить стрелкой; в данном случае стрелкой, направленной по нормали к изобаре в сторону убывания давления. При этом длина стрелки должна быть пропорциональна числовой величине градиента.

В разных точках барического поля направление и величина барического градиента будут, конечно, разными. Там, где изобары сгущены, изменение давления на единицу расстояния по нормали к изобаре больше; там, где изобары раздвинуты, оно меньше. Иначе говоря, величина горизонтального барического градиента обратно пропорциональна расстоянию между изобарами.

Если в атмосфере есть горизонтальный барический градиент, это означает, что изобарические поверхности в данном участке атмосферы наклонены к поверхности уровня и, стало быть, пересекаются с нею, образуя изобары. Изобарические поверхности наклонены всегда в направлении градиента, т. е. туда, куда давление убывает.

Горизонтальный барический градиент является горизонтальной составляющей полного барического градиента. Последний представляется пространственным вектором, который в каждой точке изобарической поверхности направлен по нормали к этой поверхности в сторону поверхности с меньшим значением давления. Числовая величина этого вектора равна –dp/dn; но здесь n — направление нормали к изобарической поверхности. Полный барический градиент можно разложить на вертикальную и горизонтальную составляющие, или на вертикальный и горизонтальный градиенты. Можно разложить его и на три составляющие по осям прямоугольных координат X, Y, Z. Давление меняется с высотой гораздо сильнее, чем в горизонтальном направлении. Поэтому вертикальный барический градиент в десятки тысяч раз больше горизонтального. Он уравновешивается или почти уравновешивается направленной противоположно ему силой тяжести, как это вытекает из основного уравнения статики атмосферы. На горизонтальное движение воздуха вертикальный барический градиент не влияет. Дальше в этой главе мы будем говорить только о горизонтальном барическом градиенте, называя его просто барическим градиентом.


38. Скорость ветра

Как нам уже известно из главы второй, ветром называют движение воздуха относительно земной поверхности, причем, как правило, имеется в виду горизонтальная составляющая этого движения. Однако иногда говорят о восходящем или о нисходящем ветре, учитывая также и вертикальную составляющую. Ветер характеризуется вектором скорости. На практике под скоростью ветра подразумевается только числовая величина скорости; именно ее мы будем в дальнейшем называть скоростью ветра, а направление вектора скорости — направлением ветра.

Скорость ветра выражается в метрах в секунду, в километрах в час (в особенности при обслуживании авиации) и в узлах (в морских милях в час). Чтобы перевести скорость из метров в секунду в узлы, достаточно умножить число метров в секунду на 2.

Существует еще оценка скорости (или, как принято говорить в этом случае, силы) ветра в баллах, так называемая шкала Бофорта, по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными его эффектами, такими, как степень волнения на море, качание ветвей и деревьев, распространение дыма из труб и т. п. Каждая градация по шкале Бофорта носит определенное название. Так, нулю шкалы Бофорта соответствует штиль, т. е. полное отсутствие ветра. Ветер в 4 балла, по Бофорту называется умеренным и соответствует скорости 5—7 м/сек; в 7 баллов — сильным, со скоростью 12—15 м/сек; в 9 баллов — штормом, со скоростью 18—21 м/сек; наконец, ветер в 12 баллов по Бофорту— это уже ураган, со скоростью свыше 29 м/сек.

Различают сглаженную скорость ветра за некоторый небольшой промежуток времени, в течение которого производятся наблюдения, и мгновенную скорость ветра, которая вообще сильно колеблется и временами может быть значительно ниже или выше сглаженной скорости. Анемометры обычно дают значения сглаженной скорости ветра, и в дальнейшем речь будет идти именно о ней.

У земной поверхности чаще всего приходится иметь дело с ветрами, скорости которых порядка 4—8 м/сек и редко превышают 12—15 м/сек. Но все же в штормах и ураганах умеренных широт скорости могут превышать 30 м/сек, а в отдельных порывах достигать 60 м/сек. В тропических ураганах скорости ветра доходят до 65 м/сек, а отдельные порывы — до 100 м/сек. В маломасштабных вихрях (смерчи, тромбы) возможны скорости и более 100 м/сек. В так называемых струйных течениях в верхней тропосфере и в нижней стратосфере средняя скорость ветра за длительное время и на большой площади может доходить до 70—100 м/сек.

Скорость ветра у земной поверхности измеряется анемометрами разной конструкции. Чаще всего они основаны на том, что давление ветра приводит во вращение приемную часть прибора (чашечный анемометр, мельничный анемометр и пр.) или отклоняет ее от положения равновесия (доска Вильда). По скорости вращения или величине отклонения можно определить скорость ветра. Есть конструкции, основанные на манометрическом принципе (трубка Пито). Имеется ряд конструкций самопишущих приборов — анемографов и (если измеряется также и направление ветра) анеморумбографов. Приборы для измерения ветра на наземных станциях устанавливаются на высоте 10—15 м над земной поверхностью. Измеренный ими ветер и называется ветром у земной поверхности.

Направление ветра

Нужно хорошо запомнить, что, говоря о направлении ветра, имеют в виду направление, откуда он дует. Указать это направление можно, назвав либо точку горизонта, откуда дует ветер, либо угол, образуемый направлением ветра с меридианом места, т. е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад — и 8 промежуточных румбов между ними: север-северо-восток, восток-северо-восток, восток-юго-восток, юг-юго-восток, юг-юго-запад, запад-юго-запад, запад-северо-запад, север-северо-запад (рис. 68). 16 румбов, указывающих направление, откуда дует ветер, имеют следующие сокращенные обозначения, русские и международные:

Если направление ветра характеризуется углом его с меридианом, то отсчет ведется от севера по часовой стрелке. Таким образом, северу будет соответствовать 0° (360°), северо-востоку 45°, востоку 90°, югу 180°, западу 270°. При наблюдениях над ветром в высоких слоях атмосферы направление его, как правило, указывается в градусах, а при наблюдениях на наземных метеорологических станциях — в румбах горизонта.

Направление ветра определяется с помощью флюгера, вращающегося около вертикальной оси. Под действием ветра флюгер принимает положение по направлению ветра. Флюгер обычно соединяется с доской Вильда.

Так же как и для скорости, различают мгновенное и сглаженное направление ветра. Мгновенные направления ветра значительно колеблются около некоторого среднего (сглаженного) направления, которое определяется при наблюдениях по флюгеру.

Однако и сглаженное направление ветра в каждом данном месте Земли непрерывно меняется, а в разных местах в одно и то же время оно также различно. В одних местах ветры различных направлений имеют за длительное время почти равную повторяемость, в других — хорошо выраженное преобладание одних направлений ветра над другими в течение всего сезона или года. Это зависит от условий общей циркуляции атмосферы и отчасти от местных топографических условий.

При климатологической обработке наблюдений над ветром можно для каждого данного пункта построить диаграмму, представляющую собой распределение повторяемости направлений ветра по основным румбам, в виде так называемой розы ветров (рис. 69). От начала полярных координат откладываются направления по румбам горизонта (8 или 16) отрезками, длины которых пропорциональны повторяемости ветров данного направления. Концы отрезков можно соединить ломаной линией. Повторяемость штилей указывается числом в центре диаграммы (в начале координат). При построении розы ветров можно учесть еще и среднюю скорость ветра по каждому направлению, умножив на нее повторяемость данного направления. Тогда график покажет в условных единицах количество воздуха, переносимого ветрами каждого направления.

Для представления на климатических картах направление ветра обобщают разными способами. Можно нанести на карту в разных местах розы ветров. Можно определить равнодействующую всех скоростей ветра (рассматриваемых как векторы) в данном месте за тот или иной календарный месяц в течение многолетнего периода и затем взять направление этой равнодействующей в качестве среднего направления ветра. Но чаще определяется преобладающее направление ветра. Именно, определяется квадрант с наибольшей повторяемостью. Средняя линия этого квадранта принимается за преобладающее направление.

Порывистость ветра

Ветер постоянно и быстро меняется по скорости и направлению, колеблясь около каких-то средних величин. Причиной этих колебаний (пульсаций, или флуктуации) ветра является турбулентность, о которой говорилось в главе второй. Колебания эти можно регистрировать чувствительными самопишущими приборами. Ветер, обладающий резко выраженными колебаниями скорости и направления, называют порывистым. При особенно сильной порывистости говорят о шквалистом ветре.

При обычных станционных наблюдениях над ветром определяют среднее (сглаженное) направление и среднюю его скорость за промежуток времени порядка нескольких минут. При наблюдениях по флюгеру Вильда наблюдатель должен в течение двух минут следить за колебаниями флюгарки и в течение двух минут за колебаниями доски Вильда, а в результате определить среднее (сглаженное) направление и среднюю (сглаженную) скорость за это время. Чашечный анемометр дает возможность определить среднюю скорость ветра за любой конечный промежуток времени.

Однако представляет интерес также и изучение порывистости ветра. Порывистость можно характеризовать отношением амплитуды колебаний скорости ветра за некоторый промежуток времени к средней скорости за то же время; при этом берется либо средняя, либо наиболее часто встречающаяся амплитуда. Под амплитудой подразумевается разность между последовательными максимумом и минимумом мгновенной скорости. Есть и другие характеристики изменчивости, в том числе и направления ветра.

Порывистость тем больше, чем больше турбулентность. Следовательно, она сильнее выражена над сушей, чем над морем; особенно велика в районах со сложным рельефом местности; больше летом, чем зимой; имеет послеполуденный максимум в суточном ходе.

В свободной атмосфере турбулентность может приводить к болтанке самолетов. Болтанка особенно велика в сильно развитых облаках конвекции. Но она резко возрастает и при отсутствии облаков в зонах так называемых струйных течений.

Влияние препятствий на ветер

Всякое препятствие, стоящее на пути ветра, будет как-то на него влиять, возмущать поле ветра. Такие препятствия могут быть и крупномасштабными, как горные хребты, и мелкомасштабными, как здания, деревья, лесные полосы и т. д. Прежде всего препятствие отклоняет воздушное течение: оно должно либо обтекать препятствие с боков, либо перетекать через него сверху. При этом горизонтальное обтекание происходит в большей степени. Перетекание происходит тем легче, чем неустойчивее стратификация воздуха, т. е. чем больше вертикальные градиенты температуры в атмосфере. Перетекание воздуха через препятствия приводит к очень важным следствиям, таким, как увеличение облаков и осадков на наветренном склоне горы при восходящем движении воздуха и, наоборот, рассеяние облачности на подветренном склоне при нисходящем движении.

Обтекая препятствие, ветер перед ним ослабевает, но с боковых сторон усиливается, особенно у выступов препятствий (углы зданий, мысы береговой линии и пр.). Линии тока в таких местах сгущаются. За препятствием скорость ветра уменьшается, там имеется ветровая тень.

Очень существенно усиливается ветер, попадая в суживающееся орографическое ложе, например между двумя горными хребтами. При продвижении воздушного потока его поперечное сечение уменьшается; а так как сквозь уменьшающееся сечение должно пройти столько же воздуха, то скорость возрастает (рис. 74). Этим объясняются сильные ветры в некоторых районах; например, северные ветры во Владивостоке сильнее, чем в районах, расположенных севернее его. Тем же объясняется и усиление ветра в проливах между высокими островами и даже на городских улицах.

Перед препятствием и за ним иногда создаются так называемые наветренные и подветренные вихри.

Влияние полезащитных лесных полос на микроклиматические условия полей связано в первую очередь с тем ослаблением ветра в приземных слоях воздуха, которое создают лесные полосы. Воздух перетекает поверх лесной полосы, и, кроме того, скорость его ослабевает при просачивании его сквозь просветы в полосе. Поэтому непосредственно за полосой скорость ветра резко ослаблена. На более далеком расстоянии за полосой скорость ветра увеличивается. Однако первоначальная, неослабленная скорость ветра восстанавливается только на расстоянии, равном 40—50-кратной высоте деревьев полосы, если полоса ажурная (несплошная). Влияние сплошной полосы распространяется на расстояние, равное 20—30-кратной высоте деревьев и меньше.


Информация о работе «Физическая география»
Раздел: География
Количество знаков с пробелами: 283636
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
19617
0
3

... Южной Америки, вскрыл значение анализа взаимосвязей как всеобщей нити всей географической науки. Он выявил биоклиматическую широтную зональность и высотную поясность, предложил употребить изотермы в климатических характеристиках, заложил основы сравнительной физической географии. В главной своей работе - "Космос, опыт физического мироописания" - он обосновал взгляд на земную поверхность (предмет ...

Скачать
102044
4
2

... . Выполнение работы учащимися под руководством учителя. Составление отчета. Обсуждение и теоретическая интерпретация полученных результатов работы [21]. 2. Современные методы и подходы, нацеленные на активизацию познавательной деятельности учащихся в процессе изучения курса «ФГМиО»   Существует много современных технологий, позволяющих избрать наиболее эффективные формы и методы обучения. В ...

Скачать
556297
1
0

... было бы ожидать в связи с обилием карстующихся пород. Более широко они развиты в южной части страны, где отсутствует сплошная мерзлота. Так, на Лено-Ангарском и Лено-Алданском плато имеется масса карстовых воронок, колодцев, слепых долин и т. д. С активным физическим выветриванием в условиях резко континентального климата связано обилие глыбово-каменистых россыпей, каменных потоков - курумов и ...

Скачать
29440
0
15

... , сколько понимание, осмысление изучаемого материала. География, как и другие предметы, формирует систему понятий, знаний, закладывает основы мировоззрения личности. Глава 2. Формы и методы познавательной деятельности учащихся на уроках физической географии С каким желанием, интересом идут шестиклассники на первые уроки географии, с широко раскрытыми глазами внимательно слушают рассказы о ...

0 комментариев


Наверх