15. Тепловой баланс и тепловой режим земной поверхности и атмосферы. Различия в тепловом режиме почвы и водоемов. Суточный годовой ход температуры
Остановимся сначала на тепловых условиях земной поверхности и самых верхних слоев почвы и водоемов. Это необходимо потому, что нижние слои атмосферы нагреваются и охлаждаются больше всего путем радиационного и нерадиационного обмена теплом с верхними слоями почвы и воды. Поэтому изменения температуры в нижних слоях атмосферы прежде всего определяются изменениями температуры земной поверхности, следуют за этими изменениями.
Земная поверхность, т. е. поверхность почвы или воды (а также и растительного, снежного, ледяного покрова), непрерывно разными способами получает и теряет тепло. Через земную поверхность тепло передается вверх — в атмосферу и вниз — в почву или в воду.
Во-первых, на земную поверхность поступают суммарная радиация и встречное излучение атмосферы. Они в большей или меньшей степени поглощаются поверхностью, т. е. идут на нагревание верхних слоев почвы и воды. В то же время земная поверхность излучает сама и при этом теряет тепло.
Во-вторых, к земной поверхности приходит тепло сверху, из атмосферы, путем теплопроводности. Тем же способом тепло уходит от земной поверхности в атмосферу. Путем теплопроводности тепло также уходит от земной поверхности вниз, в почву и воду, либо приходит к земной поверхности из глубины почвы и воды.
В-третьих, земная поверхность получает тепло при конденсации на ней водяного пара из воздуха или, напротив, теряет тепло при испарении с нее воды. В первом случае выделяется скрытое тепло, во втором тепло переходит в скрытое состояние.
Не будем касаться некоторых менее важных процессов, например затраты тепла на таяние снега, лежащего на поверхности, или распространения тепла в глубь почвы вместе с водой осадков.
В любой промежуток времени от земной поверхности уходит вверх и вниз в совокупности такое же количество тепла, какое она за это время получает сверху и снизу. Если бы было иначе, не выполнялся бы закон сохранения энергии: следовало бы допустить, что на земной поверхности энергия возникает или исчезает. Однако возможно, что, например, вверх может уходить больше тепла, чем пришло сверху; в таком случае избыток отдачи тепла должен покрываться приходом тепла к поверхности из глубины почвы или воды.
Итак, алгебраическая сумма всех приходов и расходов тепла на земной поверхности должна быть равной нулю. Это и выражается уравнением теплового баланса земной поверхности.
Чтобы написать это уравнение, во-первых, объединим поглощенную радиацию и эффективное излучение в радиационный баланс.
Приход тепла из воздуха или отдачу его в воздух путем теплопроводности назовем Р. Такой же приход или расход путем теплообмена с более глубокими слоями почвы или воды назовем А. Потерю тепла при испарении или приход его при конденсации на земной поверхности обозначим LE, где L — удельная теплота испарения и Е — масса испарившейся или сконденсировавшейся воды.
Можно еще сказать, что смысл уравнения состоит в том, что радиационный баланс на земной поверхности уравновешивается нерадиационной передачей тепла (рис. 5.1).
Уравнение (1) действительно для любого промежутка времени, в том числе и для многолетнего периода.
Из того, что тепловой баланс земной поверхности равен нулю, не следует, что температура поверхности не меняется. Когда передача тепла направлена вниз, то тепло, приходящее к поверхности сверху и уходящее от нее вглубь, в значительной части остается в самом верхнем слое почвы или воды (в так называемом деятельном слое). Температура этого слоя, а стало быть, и температура земной поверхности при этом возрастают. Напротив, при передаче тепла через земную поверхность снизу вверх, в атмосферу, тепло уходит прежде всего из деятельного слоя, вследствие чего температура поверхности падает.
От суток к суткам и от года к году средняя температура деятельного слоя и земной поверхности в любом месте меняется мало. Это значит, что за сутки в глубь почвы или воды попадает днем почти столько же тепла, сколько уходит из нее ночью. Но все же за летние сутки тепла уходит вниз несколько больше, чем приходит снизу. Поэтому слои почвы и воды, а стало быть, и их поверхность день ото дня нагреваются. Зимой происходит обратный процесс. Эти сезонные изменения прихода - расхода тепла в почве и воде за год почти уравновешиваются, и средняя годовая температура земной поверхности и деятельного слоя год от года меняется мало.
Различия в тепловом режиме почвы и водоемов
Существуют резкие различия в нагревании и тепловых особенностях поверхностных слоев почвы и верхних слоев водных бассейнов. В почве тепло распространяется по вертикали путем молекулярной теплопроводности, а в легкоподвижной воде — также путем турбулентного перемешивания водных слоев, намного более эффективного. Турбулентность в водоемах обусловлена, прежде всего, волнением и течениями. Но в ночное время суток и в холодное время года к этого рода турбулентности присоединяется еще и термическая конвекция: охлажденная на поверхности вода опускается вниз вследствие возросшей плотности и замещается более теплой водой из нижних слоев. В океанах и морях некоторую роль в перемешивании слоев ив связанной с ним передаче тепла играет также и испарение. При значительном испарении с поверхности моря верхний слой воды становится более соленым и плотным, вследствие чего вода опускается с поверхности в глубину. Кроме того, радиация глубже проникает в воду в сравнении с почвой. Наконец, теплоемкость воды велика в сравнении с почвой, и одно и то же количество тепла нагревает массу воды до меньшей температуры, чем такую же массу почвы.
В результате суточные колебания температуры в воде распространяются на глубину порядка десятков метров, а в почве — менее чем до одного метра. Годовые колебания температуры в воде распространяются на глубину сотен метров, а в почве — только на 10—20 м.
Итак, тепло, приходящее днем и летом на поверхность воды, проникает до значительной глубины и нагревает большую толщу воды. Температура верхнего слоя и самой поверхности воды повышается при этом мало. В почве же приходящее тепло распределяется в тонком верхнем слое, который, таким образом, сильно нагревается. Член А в уравнении теплового баланса (1) для воды гораздо больше, чем для почвы, а член Р соответственно меньше.
Ночью и зимой вода теряет тепло из поверхностного слоя, но взамен него приходит накопленное тепло из нижележащих слоев. Поэтому температура на поверхности воды понижается медленно. На поверхности же почвы температура при отдаче тепла падает быстро: тепло, накопленное в тонком верхнем слое, быстро из него уходит без восполнения снизу.
В результате днем и летом температура на поверхности почвы выше, чем температура на поверхности воды; ночью и зимой ниже. Это значит, что суточные и годовые колебания температуры на поверхности почвы больше, притом значительно больше, чем на поверхности воды.
Вследствие указанных различий в распространении тепла водный бассейн за теплое время года накапливает в достаточно мощном слое воды большое количество тепла, которое отдает в атмосферу в холодный сезон. Напротив, почва в течение теплого сезона отдает по ночам большую часть того тепла, которое получает днем, и мало накапливает его к зиме.
В средних широтах за теплую половину года в почве накапливается 1,5—3 ккал тепла на каждый квадратный сантиметр поверхности. В холодное время почва отдает это тепло атмосфере. Величина ±1,5—3 ккал/см2 в год составляет годовой теплооборот почвы. Под влиянием снежного покрова зимой и растительного летом годовой теплооборот почвы уменьшается; например, под Ленинградом на 30%. В тропиках годовой теплооборот меньше, чем в умеренных широтах, так как там меньше годовые различия в притоке солнечной радиации.
Годовой теплооборот больших водоемов примерно в 20 раз больше по сравнению с годовым теплооборотом почвы. Балтийское море отдает воздуху в холодное время 52 ккал/см2 и столько же накапливает в теплое время года. Годовой теплооборот Черного моря ±48 ккал/см2, Женевского озера ±35 ккал/см2. В результате указанных различий температура воздуха над морем летом ниже, а зимой выше, чем над сушей.
Суточный и годовой ход температуры на поверхности почвы
Измерение температуры на поверхности почвы является методически трудной задачей, особенно при пользовании жидкостными термометрами. Результаты измерений сильно зависят от условий установки термометра, не вполне отражают действительные температурные условия на поверхности почвы и недостаточно сравнимы. Лучшие результаты можно получить с помощью электрических термометров.
Температура на поверхности почвы имеет суточный ход. Минимум ее наблюдается примерно через полчаса после восхода солнца. К этому времени радиационный баланс поверхности почвы становится равным нулю — отдача тепла из верхнею слоя почвы эффективным излучением уравновешивается возросшим притоком суммарной радиации. Нерадиационный же обмен тепла в это время незначителен.
Затем температура на поверхности почвы растет до 13— 14 часов, когда достигает максимума в суточном ходе. После этого начинается падение температуры. Радиационный баланс в послеполуденные часы, правда, остается положительным; однако отдача тепла в дневные часы из верхнего слоя почвы в атмосферу происходит не только путем эффективного излучения, но и путем возросшей теплопроводности, а также при увеличившемся испарении воды. Продолжается и передача тепла в глубь почвы. Поэтому температура на поверхности почвы и падает с 13—14 часов до утреннего минимума.
Суточный ход температуры на поверхности почвы изобразится на графике время — температура волнообразной кривой, более или менее напоминающей синусоиду. Высшая точка этой кривой характеризует максимум, низшая — минимум температуры (рис. 5.2).
Максимальные температуры на поверхности почвы обычно выше, чем в воздухе на высоте метеорологической будки. Это понятно: днем солнечная радиация прежде всего нагревает почву, а уже от нее нагревается воздух.
В Московской области летом на поверхности обнаженной почвы наблюдаются температуры до +55°, а в пустынях — даже до +80°.
Ночные минимумы температуры, наоборот, бывают на поверхности почвы ниже, чем в воздухе, так как, прежде всего, почва выхолаживается эффективным излучением, а уже от нее охлаждается воздух. Зимой в Московской области ночные температуры на поверхности (в это время покрытой снегом) могут падать ниже —50°, летом (кроме июля) — до нуля. На снежной поверхности во внутренних районах Антарктиды даже средняя месячная температура в июне около —70°, а в отдельных случаях она может падать до —90°.Разность между суточным максимумом и суточным минимумом температуры называется суточной амплитудой температуры. В Московской области в зимние месяцы многолетняя средняя суточная амплитуда температуры на поверхности почвы (снега) равна 5—10°, в летние 10—20°. В отдельные дни суточные амплитуды, конечно, могут быть и выше и ниже многолетних средних значений в зависимости от ряда причин, прежде всего от облачности. В безоблачную погоду велика солнечная радиация днем и также велико эффективное излучение ночью. Поэтому суточный (дневной) максимум особенно высок, а суточный (ночной) минимум низок и, следовательно, суточная амплитуда велика. В облачную погоду дневной максимум понижен, ночной минимум повышен и суточная амплитуда уменьшена.Сильные ночные заморозки на почве весной и осенью обычно наблюдаются при ясном небе, т. е. при большом эффективном излучении. Суточный ход температуры почвы зависит также от экспозиции склонов, т. е. от того, как ориентирован наклон данного участка земной поверхности по отношению к странам света. Ночное излучение одинаково на склонах любой ориентации; но дневное нагревание почвы, конечно, будет наибольшим на южных склонах и наименьшим на северных. Суточный ход температуры почвы зависит также от почвенного покрова, что будет выяснено дальше.
Температура поверхности почвы, конечно, меняется и в годовом ходе. В тропических широтах ее годовая амплитуда, т. е. разность многолетних средних температур самого теплого и самого холодного месяца года, мала и с широтой растет. В северном полушарии на широте 10° она около 3°, на широте 30е около 10°, на широте 50° в среднем около 25°.
... Южной Америки, вскрыл значение анализа взаимосвязей как всеобщей нити всей географической науки. Он выявил биоклиматическую широтную зональность и высотную поясность, предложил употребить изотермы в климатических характеристиках, заложил основы сравнительной физической географии. В главной своей работе - "Космос, опыт физического мироописания" - он обосновал взгляд на земную поверхность (предмет ...
... . Выполнение работы учащимися под руководством учителя. Составление отчета. Обсуждение и теоретическая интерпретация полученных результатов работы [21]. 2. Современные методы и подходы, нацеленные на активизацию познавательной деятельности учащихся в процессе изучения курса «ФГМиО» Существует много современных технологий, позволяющих избрать наиболее эффективные формы и методы обучения. В ...
... было бы ожидать в связи с обилием карстующихся пород. Более широко они развиты в южной части страны, где отсутствует сплошная мерзлота. Так, на Лено-Ангарском и Лено-Алданском плато имеется масса карстовых воронок, колодцев, слепых долин и т. д. С активным физическим выветриванием в условиях резко континентального климата связано обилие глыбово-каменистых россыпей, каменных потоков - курумов и ...
... , сколько понимание, осмысление изучаемого материала. География, как и другие предметы, формирует систему понятий, знаний, закладывает основы мировоззрения личности. Глава 2. Формы и методы познавательной деятельности учащихся на уроках физической географии С каким желанием, интересом идут шестиклассники на первые уроки географии, с широко раскрытыми глазами внимательно слушают рассказы о ...
0 комментариев