5. Выбор феррита
Марку феррита выберем, как и для схемы сложения мощностей – 50ВНС.
Параметры феррита: m = 50; при B=0,001 T и f=30 MГц.
6. Конструкция трансформатора и сердечника
Выберем одновитковую конструкцию (аналогичную вышерассчитанной). Внутренний диаметр ферритового сердечника d должен примерно в два раза превышать диаметр линии, т.к. сквозь кольцо пропустим две линии. Выберем его из стандартных значений, приведенных в табл. 4.4 в [2]: .
Внешний диаметр ферритового сердечника D определяется из условия: Bfраб<Bfmax, а Lпр не должна быть ниже Lпр.треб.
внешний диаметр ферритового сердечника найдем как
Из табл. 4.5 в [2] для трубчатых ферритовых сердечников находим:
– внешний диаметр и высота трубки ферритового сердечника;
– число ферритовых трубок (см. рис 12).
По известным конструктивным параметрам сердечника определим Bfраб и Lпр и сравним эти значения с допустимыми.
Поскольку LПР значительно больше LПР.ТР, то можно уменьшить длину линии и число колец. Возьмем число колец равным 3, тогда длина линии составит 36 мм.
Как видно из расчетов схема удовлетворяет всем требованиям.
7. Тепловые потери в феррите и КПД трансформатора
– удельные тепловые потери в феррите;
– мощность потерь в феррите по всему объему;
– КПД трансформатора.
Основные и фазокомпенсирующие линии имеют одинаковые геометрические размеры и выполняются из одинаковых кабелей.
Рассчитали выходную часть ОК, а именно отдельные усилительные модули, выполненные по двухтактной схеме, схемы симметрирования и преобразования выходного сопротивления, а также схему сложения мощностей от четырех синфазных генераторов. Схему деления мощности, которая распределяет ее на усилительные модули, выполним точно так же, как и схему сложения, при условии ее зеркального отображения.
Данный оконечный каскад позволяет получить заданную по ТЗ мощность в нагрузке, но для этого он должен получать на входе каждого модуля мощность равную 22 Вт, т.е. предоконечный каскад должен генерировать мощность порядка 100 Вт. Такую задачу можно реализовать, используя одну двухтактную схему усиления на транзисторах КТ970А. Данный транзистор может обеспечить максимальную мощность 100 Вт в нагрузке. Используя его на половинную мощность (50 Вт), что увеличивает надежность работы всего каскада, получим от двухтактного генератора 100 Вт, что нам и необходимо. Для передачи общей мощности в нагрузку, т.е. в ОК можно использовать ТДЛ, аналогичную вышерассмотренной.
Транзистор КТ970А может обеспечить усиление по мощности в 4–13 раз, значит, реально мы можем получить усиление в данном каскаде в 8–9 раз, а значит, мощность на входе предоконечного каскада должна быть равной 10–12 Вт. Такую мощность можно получить от усилителя (предварительного), выполненного на одном транзисторе, например на 2Т934В, который обеспечивает мощность 25 Вт. Используя его на половинную мощность, чтобы увеличить надежность, получим те самые 12–13 Вт в нагрузке, т.е. в предоконечном усилителе. Коэффициент передачи по мощности данного транзистора составляет 5–15, что вполне достаточно, т.к. в этом случае на вход предварительного усилителя будет поступать сигнал мощностью в 1 Вт.
Автогенератор может реально выдавать мощность порядка 5 – 15 мВт, т.е. необходимо поставить еще несколько усилительных звеньев, которые смогут повысить мощность автогенератора до 1 Вт (на входе предварительного усилителя). Выполним эту задачу включив последовательно два однотипных усилительных каскада, построенных по схеме с ОЭ, каждый из которых обеспечит усиление сигнала по мощности в 10 раз. В качестве активных элементов в этих каскадах используем транзисторы КТ606А и КТ3102А
С помощью пяти усилительных звеньев (ОК, предоконечного каскада и предварительных усилителей) можно получить необходимую по ТЗ мощность в нагрузке –500 Вт.
В данном проекте не рассматривается расчет предоконечного и предварительных каскадов.
а цифровых ИС можно реализовать практически любой алгоритм обработки сигнала, осуществляемый в приемно-усилительных устройствах, включая элементы оптимального радиоприема. Связные РПУ с частотной модуляцией проектируются для работы на одной фиксированной частоте или в диапазоне частот. В первом случае рабочая частота стабилизируется кварцевым резонатором, а для генерации ЧМ колебаний могут быть ...
... , обеспечивающий ослабление высших гармоник на 40 дБ вне рабочего диапазона частот передатчика в соответствии с техническим заданием (см. раздел 4 АСЧЁТ ВЫХОДНОГО ФИЛЬТРА). Поскольку в данной курсовой работе необходимо спроектировать только оконечный мощный каскад связного передатчика с ЧМ, то для конкретизации, входящие в его состав блоки обведены синей пунктирной линией, и именно о них далее ...
... в цепи питания базы: Ток делителя выбирается из соотношения 5) Мощность источника питания: КПД цепи коллектора: КПД АГ: 5.5 Расчет варикапа Для осуществления частотной модуляции в АГ будем использовать варикап КВ109В с параметрами: Тип варикапаа Q КВ109В 1.9-3.1 25 50 160 Так как он обладает высокой добротностью на рабочей частоте. ...
... генератором и не передавать сигнал несущей. В силу перечисленных выше причин ОБП широко применяется в системах передачи речевых сигналов, а вопросы связанные с проектированием и применением радиопередатчиков с однополосной модуляцией весьма актуальны. Кроме того, представляют самостоятельный интерес методы формирования сигнала ОБП и схемные решения, их реализующие. 3. Расчетная часть. 3.1 ...
0 комментариев