4. Расчет ГУН
4.1 Выбор основных параметров и активного элемента
ГУН имеет две регулировки частоты: регулировка частоты по диапазону (управляющее напряжение в этом случае поступает с синтезатора сетки дискретных частот) и модуляция частоты сигналом. Регулировки производятся с помощью двух варикапов.
Диапазон частот, в котором работает ГУН лежит от 75 до 80 МГц, т.к. после него идет умножитель частоты сигнала в два раза, т.е.
Мощность, которую должен развивать ГУН в нагрузке примем равной 10 мВт.
Рис.14 Схема ГУН с частотным модулятором
На рисунке 14 представлена принципиальная схема ГУНа, расчет которой приведен ниже.
Для упрощения расчета автогенератора выберем безынерционный транзистор для частоты автоколебаний, например, КТ340Б.
Параметры транзистора:
Проверим, можно ли пренебречь инерционностью этого транзистора в данных условиях. Для этого необходимо выполнение условия:
,
где f – частота генерируемых колебаний, fS – граничная частота транзистора по крутизне.
Граничная частота транзистора по крутизне определяется выражением:
где распределённое сопротивление базы rБ берется из справочника, а крутизна статической проходной характеристики S0:
температурный потенциал перехода Т:
.
Подставляя рассчитанные величины в начальную формулу, получим:
.
Таким образом, транзистор в данном случае можно считать безынерционным устройством.
4.2 Расчет автогенератора
1. Задаемся фактором регенерации G = 5;
2. Берем коэффициенты Берга из справочника:
3. Определяем первую гармонику ток коллектора
4. Напряжение на коллекторной нагрузке автогенератора
5. Сопротивление коллекторной нагрузки
6. Выберем коэффициент использования по напряжению
7. Напряжение питания выберем стандартное ЕК=12В;
8. Мощность, подводимая к автогенератору
9. Рассеиваемая на коллекторе мощность
10. Коэффициент обратной связи
11. Напряжение обратной связи
12. Входное сопротивление автогенератора
13. Постоянная составляющая тока базы
14. Смещение на базе
4.3 Расчет элементов колебательного контура
Задаемся величинами и КПД контура , тогда – добротность нагруженного контура;
1.Коэффициент включения контура в коллекторную цепь
2.Реактивное сопротивление между коллектором и эмиттером
3. Реактивное сопротивление между базой и эмиттером
4. Реактивное сопротивление между базой и коллектором
Сопротивление R3 входит в контур и поэтому шунтирует его, чтобы этого не происходило нужно взять его величину значительно большей, чем сопротивление коллекторной нагрузки, т.е. выбираем R3=2,8кОм.
а цифровых ИС можно реализовать практически любой алгоритм обработки сигнала, осуществляемый в приемно-усилительных устройствах, включая элементы оптимального радиоприема. Связные РПУ с частотной модуляцией проектируются для работы на одной фиксированной частоте или в диапазоне частот. В первом случае рабочая частота стабилизируется кварцевым резонатором, а для генерации ЧМ колебаний могут быть ...
... , обеспечивающий ослабление высших гармоник на 40 дБ вне рабочего диапазона частот передатчика в соответствии с техническим заданием (см. раздел 4 АСЧЁТ ВЫХОДНОГО ФИЛЬТРА). Поскольку в данной курсовой работе необходимо спроектировать только оконечный мощный каскад связного передатчика с ЧМ, то для конкретизации, входящие в его состав блоки обведены синей пунктирной линией, и именно о них далее ...
... в цепи питания базы: Ток делителя выбирается из соотношения 5) Мощность источника питания: КПД цепи коллектора: КПД АГ: 5.5 Расчет варикапа Для осуществления частотной модуляции в АГ будем использовать варикап КВ109В с параметрами: Тип варикапаа Q КВ109В 1.9-3.1 25 50 160 Так как он обладает высокой добротностью на рабочей частоте. ...
... генератором и не передавать сигнал несущей. В силу перечисленных выше причин ОБП широко применяется в системах передачи речевых сигналов, а вопросы связанные с проектированием и применением радиопередатчиков с однополосной модуляцией весьма актуальны. Кроме того, представляют самостоятельный интерес методы формирования сигнала ОБП и схемные решения, их реализующие. 3. Расчетная часть. 3.1 ...
0 комментариев