3.2 Визначимо передатні функції розімкненої та замкненої САК відносно вхідної
а) передатну функцію розімкненої САК визначимо як добуток передатних функцій усіх ланцюгів САК, оскільки маємо послідовне з’єднання ланцюгів. Таким чином W(s)=WГ(s)·WDK(s)·WП(s)·WD(s) =,
w(s) = .
Схема розімкненої САК зображена на рис. 3.
Рис. 3. Структурна схема розімкненої САК
б) передатну функцію замкненої САК отримаємо за формулою Ф(s) = :
Ф(s) = .
Зображення схеми замкненої САК зображена на рис. 4.
Рис. 4. Структурна схема замкненої САК
3.3 Визначимо стійкість системи по критерію Гурвіца
Знаючи перехідну функцію, знайдемо характеристичне рівняння системи: D(s)=.
На основі отриманих коефіцієнтів характеристичного рівняння побудуємо головний визначник Гурвіца:
D = .
За критерієм Гурвіца для того, щоб система автоматичного керування була стійкою, необхідно та достатньо, щоб при а0>0 всі визначники Гурвіца були додатними. Умовою стійкості для системи третього порядку будуть: а1·a2>a0·a3.
В даному випадку: а0 = 0,006 > 0; а1·a2 = 0,32·1 = 0,32; a0·a3 = 0,006·7,5 = 0,045; 0,32>0,045. Умова стійкості системи виконуються, отже за критерієм Гурвіца САК стійка.
3.4 Побудова амплітудно-фазової частотної характеристики (АФЧХ) та визначення стійкості САК за критерієм Найквіста. Дослідження системи методом D – розбиття
а). Побудуємо амплітудно-частотну характеристику в визначимо стійкість системи по критерію Найквіста:
1) запишемо перехідну характеристику розімкнутої САК
w(s)=.
2) в рівнянні перехідної функції проведемо заміну s→j·ω та проведемо всі можливі перетворення та спрощення, тоді
w(j·ω) = =
= = .
Дійсна частина цього виразу Re(w(j·ω)) = = Х(ω),
уявна частина – Im(w(j·ω)) = = У(ω).
3) Побудуємо на комплексній площині (Х0У) криву Найквіста та зробимо висновок про стійкість системи:
У(ω) = 0 → ω = 0 → Х(0) = 0;
У(ω) = 0 → ω = =12,909 →
Х(12,909) = = -0,141.
По цим точкам побудуємо криву Найквіста (рис. 5).
Критерій Найквіста: Для того щоб замкнута система була стійкою необхідно, щоб годограф розімкненої системи починаючись на дійсній вісі і рухаючись проти годинникової стрілки (при змінній частоті від 0 до ∞) не охоплював точку (-1, j0).
Рис. 5. Крива Найквіста
Замкнена САК не охоплює точку (-1, j0), що видно на рис. 5. Отже, САК стійка.
б). Дослідження системи методом D – розбиття
За даними, що були отримані в пункті 3.3 знайдемо критичний коефіцієнт підсилення системи kкр:
0,32 ≥ k·0,006
k ≤ 53
k = 53 (теоретично розрахований коефіцієнт підсилення).
Використовуючи методику D-розбиття та за допомогою програми MathCad побудуємо межу D-розбиття, обравши за параметр дослідження коефіцієнт підсилення системи.
Характеристичний поліном САК, враховуючи, що параметр, який досліджується, коефіцієнт підсилення:
D(p) = .
Звідси k(p) = і k(ωj) =
Побудуємо область D-розбиття, знаючи, що Re(k) = , Im(k) = = (див. рис. 6).
Рис. 6. Область стійкості за параметром k
На побудованій області D- розбиття можна визначити коефіцієнт підсилення (точка перетину області з дійсною віссю).
... ї стабілізації різних рухомих об'єктів, в заспокоювача хитавиці корабля, для стабілізації літального апарату та інших, а також для визначення викривлення бурових свердловин, шахт і т.д. 3 Гіроскопи в науці В даний час деякі моделі мобільних телефонів та ігрових контролерів обладнуються датчиками прискорення, так званими акселерометра. Такі датчики дозволяють управляти цими пристроями, зді ...
0 комментариев