3.2    Визначимо передатні функції розімкненої та замкненої САК відносно вхідної

а) передатну функцію розімкненої САК визначимо як добуток передатних функцій усіх ланцюгів САК, оскільки маємо послідовне з’єднання ланцюгів. Таким чином W(s)=WГ(s)·WDK(s)·WП(s)·WD(s) =,

w(s) = .

Схема розімкненої САК зображена на рис. 3.

Рис. 3. Структурна схема розімкненої САК

б) передатну функцію замкненої САК отримаємо за формулою Ф(s) = :

Ф(s) = .

Зображення схеми замкненої САК зображена на рис. 4.

Рис. 4. Структурна схема замкненої САК

 

3.3 Визначимо стійкість системи по критерію Гурвіца

 

Знаючи перехідну функцію, знайдемо характеристичне рівняння системи: D(s)=.

На основі отриманих коефіцієнтів характеристичного рівняння побудуємо головний визначник Гурвіца:

D = .

За критерієм Гурвіца для того, щоб система автоматичного керування була стійкою, необхідно та достатньо, щоб при а0>0 всі визначники Гурвіца були додатними. Умовою стійкості для системи третього порядку будуть: а1·a2>a0·a3.

В даному випадку: а0 = 0,006 > 0; а1·a2 = 0,32·1 = 0,32; a0·a3 = 0,006·7,5 = 0,045; 0,32>0,045. Умова стійкості системи виконуються, отже за критерієм Гурвіца САК стійка.

 

3.4 Побудова амплітудно-фазової частотної характеристики (АФЧХ) та визначення стійкості САК за критерієм Найквіста. Дослідження системи методом D – розбиття

а). Побудуємо амплітудно-частотну характеристику в визначимо стійкість системи по критерію Найквіста:

1) запишемо перехідну характеристику розімкнутої САК

w(s)=.

2) в рівнянні перехідної функції проведемо заміну s→j·ω та проведемо всі можливі перетворення та спрощення, тоді

w(j·ω) =  =

= = .

Дійсна частина цього виразу Re(w(j·ω)) =  = Х(ω),

уявна частина – Im(w(j·ω)) =  = У(ω).

3) Побудуємо на комплексній площині (Х0У) криву Найквіста та зробимо висновок про стійкість системи:

У(ω) = 0 → ω = 0 → Х(0) = 0;

У(ω) = 0 → ω = =12,909 →

Х(12,909) =  = -0,141.

По цим точкам побудуємо криву Найквіста (рис. 5).

Критерій Найквіста: Для того щоб замкнута система була стійкою необхідно, щоб годограф розімкненої системи починаючись на дійсній вісі і рухаючись проти годинникової стрілки (при змінній частоті від 0 до ∞) не охоплював точку (-1, j0).

Рис. 5. Крива Найквіста

Замкнена САК не охоплює точку (-1, j0), що видно на рис. 5. Отже, САК стійка.

б). Дослідження системи методом D – розбиття

За даними, що були отримані в пункті 3.3 знайдемо критичний коефіцієнт підсилення системи kкр:

0,32 ≥ k·0,006

k ≤ 53

k = 53 (теоретично розрахований коефіцієнт підсилення).

Використовуючи методику D-розбиття та за допомогою програми MathCad побудуємо межу D-розбиття, обравши за параметр дослідження коефіцієнт підсилення системи.

Характеристичний поліном САК, враховуючи, що параметр, який досліджується, коефіцієнт підсилення:

D(p) = .

Звідси k(p) =  і k(ωj) =

Побудуємо область D-розбиття, знаючи, що Re(k) = , Im(k) = = (див. рис. 6).

Рис. 6. Область стійкості за параметром k

На побудованій області D- розбиття можна визначити коефіцієнт підсилення (точка перетину області з дійсною віссю).

 


Информация о работе «Одноосьовий гіроскопічний стабілізатор»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 25465
Количество таблиц: 1
Количество изображений: 21

Похожие работы

Скачать
33039
0
0

... ї стабілізації різних рухомих об'єктів, в заспокоювача хитавиці корабля, для стабілізації літального апарату та інших, а також для визначення викривлення бурових свердловин, шахт і т.д.   3 Гіроскопи в науці В даний час деякі моделі мобільних телефонів та ігрових контролерів обладнуються датчиками прискорення, так званими акселерометра. Такі датчики дозволяють управляти цими пристроями, зді ...

0 комментариев


Наверх